


Introduction

The KNN and decision tree classifiers provide definite
answers as to whether the data belongs to certain class or
not. Their classification could be right or wrong. There are
some classifiers that provide a best guess or assign a
probability to a dataset to be in a class. Indeed the
probability theory forms the basis of many machine learning
algorithms. Here we look at the ways the probability theory
could be used to classify things. Naive Bayes classifier is
such a technique. It is called “naive’” because its formulation
makes some naive assumptions.




o

he Baysian learning method calculates explicit probabilities for hypothesis
and selects the hypothesis with higher probability. Figure 1 shows datasets
\ /‘th two classes of data. We have a measure of the probability of a new
data point (x,y) belonging to class 1, which we call it p,(x,y), and a
R robability for the data point belonging to class 2, which we call it p,(x,y).
] D classify the data point we use the following rules:

:1(x,y) > p,(x,y) the class is 1
| 1(x’y) < p,(x’y) the class is 2.

‘ n ply, we choose the class with higher probability to be the class of the
ata point. This is Bayesian decision theory- choosing the decision with

shest probability.
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Classification

Probability
Distributions

Figure 1 shows two
probability distributions with
known parameters describing
the distributions




The Bayesian Method

2 premise of the Bayesian method is that probability statements
not limited to data but can be made for models themselves.
erences are made by producing Probability Density Functions

Fs). Model parameters are treated as random variables. Bayesian
thods give optimal results given all the available information.
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Difference between Classical and Bayesian Approaches

The classical and Bayesian techniques are both
concerned with the data likelihood function. In classical
statistics the data likelihood function is used to find
model parameters that yield the highest data likelihood.
The data likelihood cannot be interpreted as a
probability density function for model parameters.
However, the Bayesian method extends the concept of
data likelihood function by adding extra prior
information to the analysis and assigning PDFs to all
model parameters and models themselves.

~ The Bayesian method is able to provide a full
~ probabilistic framework for data analysis.



)
Bayes’ Rule
an two continuous random variables are not independent, one could write

) = p(xIy) pY) = pO/IX) P()

'- e p(x]y) and p(y|x) are conditional probabilities and p(x) and p(y) are marginal
babilities. The marginal probabilities are defined as

p(x) = [ p(x,y)dy

= [ p(xly)p(y)dy

;Iete knowledge of marginal probability p(y) and conditional probability p(y|x) are needed
zonstruct p(x,y). The continuous version of the law of probability then becomes f

pxyp®y) —  pXy)P()
p(x) [ply)p(y)dy

p(ylx) =

3ayes’ rule is then derived from the above equations




Bayes rule connects conditional and marginal
probabilities to each other. In the case of a discrete

random variable, y,, with M possible values, the integral
becomes

_p(xlyi)e(y) _ p(xyi)p (i)

PR == XM pCxlypp ()




Joint Conditional Probability

Two dimensional probability
distribution in Figure 2
showing p(x,y). The two
panels on the left and bottom
show marginal distributions in
x and y. The three panels on
the right show conditional
probability distributions p(x|y)
for three different values of y,
as marked on the left panel.

Figure 2: Joint and
Conditional probability
distributions
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Bayes’ Theorem

‘ ppIying Bayes’ rule to the likelihood function p (D| M), one
ains the Bayes’ theorem

p(DIM) p(M)
P(D)

p(M|D) =

iere D stands for data and M stands for model. The Bayes’

rem combines an “initial belief” with new data and arrives at an
proved belief”. The “improved belief” is proportional to the

} uct of the “initial belief” and the probability that initial belief




General Expression of The Bayes’ Theorem

we define the presence of a prior information, | and that models are mostly described
-ameters whose values we need to estimate from data:

p(DIM,6,)p(M,6]])

e T

‘Mincludes k model parameters 6, p=1,...k shown as vector 6 with components 8,,. The
p(M g |D, I) is called the posterlor PDF for model M and parameters 0, given data'D and
prior information I. The term p(D|, M, 6, 1) is the likelihood of data given some model M

me fixed values of parameter 0 describing it and the prior information I.

' p(M, 0] 1) is the joint probability for model M and its parameters 6 in the absence of any of the
sed to compute likelihood. This is simply called the prior. The prior can be expanded as:

"_) =p (6 IM,1) p(M |1)

ly need to specify p (8 | M, 1). The term p (D|I) is the probability of data or the prior predictive
ility for D




Explaining the Bayesian Approach

The Bayesian approach can be considered as formalizing the process
of continually refining our state of knowledge about the world,
beginning with no data (as depicted by the prior), then updating that
by multiplying in the likelihood once the data D are observed to
obtain the posterior. When more data are taken , then the posterior
based on the first data set can be used as the prior for the second
analysis.

Prior: A prior incorporates all other knowledge that might exist, but
is not used when computing the likelihood p(D | M, 6, 1).

(from the book on Statistics, Data Mining and Machine Learning in Astronomy by Z.
Ivezic, A. Connolly..)




Bayesian Model Selection

Bayes’s theorem calculates the posterior PDF of parameters describing a single
MO« el, with the model assumed to be true. In model selection and hypothesis
testing we often come up with the question as which model is best supported by
the available data? For example, we may ask as set of data [x/] is better described
by a Gaussian or a Poisson distribution? Or if a set of points is better described by a
straight line or a parabola?

To find out which of the two models M, or M, is best supported by the data, we
compute the odds ratio of model M, over model M, as
£ _ P(M,|D, T)

Q21

The posterior probability for model M (M, or M.) given data D, p(M|D, ) in this
expression can be obtained from the posterior PDF p(M, 6D, I) using

Mg inalization integration over the model parameter space spanned by 0. The
posterior probability that model M is correct given data D (a number between 0

a 1) is p(DIM,Dp(M|I)
p(D|I)

p(M|D,I) =



EM)=pDIM,I) = jp(DIM,B,I)p(G M, I) d6

Vhich is called the marginal likelihood for model M and it quantifies the
robability that the data D would be observed if model M were the correct
10del. Therefore

EM)p(M,,1) _ . P(M|I)
EM)pMy, 1) % P(My|D)

Q21 =

here B,, =E(M,)/E(M,) is called the Bayes factor.

o interpret the Q,, values, one may assume the odds ratio of Q,, > 10 to imply
rong evidence in favor of M, (M, is 10 times more probable than M,) and Q,,
100 is decisive evidence that M2 is the right model for the data.




Summary of Bayes Probability

’z

B yes Theory:

I . ﬁ L we are often interested in determining the best hypothesis from some space
H, given the observed training data D. By the “best hypothesis” here we mean the
10st probable hypothesis given the data D and any prior knowledge about prior
probabilities of various hypothesis in H. Bayes theorem provides a direct method
for calculating the probability of a hypothesis based on its prior probability.

/e use the following notations. We shall write p(h) as the initial probability that
hypothesis h holds before we have observed training data. p(h) is called the prior
probability of h and contains any background knowledge we may have about the
chance that h is a correct hypothesis. Similarly, p(D) denotes the prior probability
that training data D will be observed (the probability of D given no knowledge
about which hypothesis holds). Next we define conditional probability p(D|h) which
is the probability of observing data D given some world in which hypothesis h

holds. In other words, we write p(x|y) to denote the probability of x given y. In ML
-are mainly interested in the probability p(h | D) that h holds given the observed
mg data D. p(h|D) is called the posterior probability of h.

-

-



Bayes theorem is used in Bayesian learning methods because it
provides a way to calculate posterior probability p(h|D), from the
prior probability p(h), together with p(D) and p(D|h). It states that

p(D|h)p(h)
p(D)

p(h|D) =

Here p(h | D) increases with p(h) and with p(D|h) according to
Bayes theorem. It is also reasonable to see that p(h|D)
decreases as p(D) increases because the more probable it is
that D will be observed independent of h, the less evidence D

provides in support of h.




Maximum Likelihood

1 many learning scenarios one considers some set of hypothesis H and needs to find the

t probable hypothesis h €H given the observed data D (or one of the maximally

able if there are many). We can determine this using Bayes theorem to calculate

lerior probability of each candidate hypothesis. Any such maximally probable hypothesis
lled maximum a posteriori (MAP)

p(D|h)p(h)
p(D)

hyap = argmax p(h|D) = argmax = argmax p(D|h)p(h)

e p(D) is dropped from the last step because it is a constant independent of h.

ome cases, we will assume that every hypothesis in H is equally probable a

ri (p(h,) = p(h ) for all h. and h; in H). In this case we could further simplify the
;.e equatlon and need onIy use p(D|h). p(D | h) is often called the likelihood of
data D given h and any hypothesis that maximizes p(D|h) is called maximum
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Example # 1: Conditional Probability

_et’s assume we have a jar containing seven stones. Three of these
stones are grey and four are black. The chance of randomly
lecting a grey stone is p(grey)=3/7 while selecting a black stone is
p(black)= 4/7. Now, we divide these into two buckets. What is the
‘obability of drawing a grey stone from bucket B? This is known

'  conditional probability. We are calculating the probability of a
grey stone, given that the unknown stone is coming from bucket

B. We can write this as P(grey |bucket B), which is read as “the
probability of grey given bucket B”. It is easy to find p(grey |
bucket A)= 2/4 and p(grey | bucket B)= 1/3. In other words, we can

p(grey and bucket B)
p(bucket B)

p(grey|bucket B) =



Expression of Bayes Probability

/hich is calculated as

1 3
p(grey and bucket B) = - ; p(bucket B) = -

|bucket B _7 1
p(grey|bucke )—3/7—3

yes rule tells us how to swap the symbols in a conditional probability
atement. If we have p(x|c) but want to have p(c|x), we use the following
rmula

p(x|c)p(c)
p(x)

p(clx) =

nich is just another way of interpreting the relation we already came to.




Example

ection of seven stones that are rey and
K. If we randomly select a stone from this
the probability that it will be grey or black

" stoneis and respectivel
- 317 4l7 PestveY Seven stones divided in two buckets
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Example # 2: Bayes Classifiers

onsider a medical diagnosis problem in which there are two alternative
pothesis: (1). The patient has a particular form of cancer (2). The patient
loes not. There are two possible outcomes from the test:

@ positive) and O, (negative).

f' e have prior knowledge that over the entire population of people, only
.008 have this disease. There are some uncertainties in the lab results.

p(cancer) = 0.008 p(not cancer) = 0.992
p(@ |cancer) = 098 p(© |cancer) = 0.02

p(@ |not cancer) = 0.03 p(© |not cancer) = 0.97

he lab returns a correct positive result in only 98% of cases in which the
isease is actually present. In other cases the test returns the opposite
esult. The results can be summarized as follows:




This is our training set. Suppose now we observe a new patient
for whom the [ab has returned a positive result. Should we

diagnose the patient as having cancer or not? From the above
relation

hyax, = argmax p(D|h)
We can calculate

p (@ |cancer)p(cancer) = (0.98)(0.008) = 0.0078
p((& |no cancer)p(no cancer) = (0.03)(0.992) = 0.0298

Therefore h, 4, = no cancer. Here we use the property that

p(cancer| @) + p(no cancer| @) = 1

Either the patient has cancer or does not.

Note that here the hypothesis is not completely accepted or rejected but a probability
is assigned to it




Naive Bayes Classifiers

he naive Bayes classifier applies to learning tasks where each instance x is
escribed by a conjunction of attribute values and where the target function
(X) can take on any value from some finite set V. The Bayesian approach to
assifying the new instance is to assign the most probable target value, vy,p,
iven the attribute values (a,, a,,...a,) that describe the instance

Umap = argmax P(”j|a1»a2» )

his can be written using Bayes theory

p(ay, 0y ... 0|V} Jp (1))
p(ay,az .. ay)
= argmax P(avaz ---an|vi)p(vj)

Vypa = Argmax




We could estimate the two terms in the above equation
based on the training data. Each of the p(v;) values is
estimated by counting the frequency with which each
target value vj occurs in the training data. However,
estimating different p(a,, a,..., a,) terms in this fashion is
not feasible unless we have a very large training dataset.
The problem is that the number of these terms equals
the number of possible instances times the number of
possible target values. Therefore, we need to see every
instance in the instance space many times in order to
obtain reliable estimates (this becomes clear shortly
after we go through the example).



naive Bayes classifier is based on the simplifying assumption that the attribute
es are conditionally independent. In other words, given the target value of the
ance, the probability of observing the conjunction a,,a, ..., a,, is just the product of

s robabilities of individual attributes:

D (03 @y 057) = pL01[) plaf) P ly) = i ()

Naive Bayes classifier then becomes

Unp = argmax P(”j) Hp(ai ;)

:_.e Vs is the target value output by naive Bayes classifier. In naive Bayes classifie|
number of distinct p(a, | v;) terms that must be estimated from the training data
5t the number of distinct attribute values times the number of distinct target

§s.




In summary the naive Bayes learning method involves a
learning step in which the various p(v;) and p(a; | v;)
terms are estimated based on their frequency over the
training data. The set of these estimates corresponds to

the learned hypothesis. This hypothesis is then used to
classify each new instance by applying the above
relation.




Example # 3: Naive Bayes

C'fnsider data in the following Table (taken from Machine Learning
book by T. Mitchel). Here the target attribute is PlayTennis which can
have values yes or no for different Saturday mornings. This is to be
predicted based on other attributes of the morning in question. We
now apply the naive Bayes classifier to concept learning. The table
p'vides a sample of 14 training examples of the target concept

“F yTennis” when each day is described by attributes outlook,

T perature, Humidity and wind. Here we use the naive Bayes
classifier and the training data from this table to classify the
following instance:

(, { tlook=sunny, Temperature=cool, Humidity=high, wind= strong)



r task is to predict the target value (yes or no) of the target concept
yTennis for the new instance. Using the above relation

vyp = argmax p(v;) likp(al- v)

| =argmax p(vj)p(Outlook = sunny|vj)p(Tem;;erature = cool|vj)p(Humidity = high|vj)
p(Wind = strong|v;)

€ a. is instantiated to have the attributes of the day in question (the
v instance). To calculate Vg We how need 10 probabilities that can |
stimated from the training dataset. First the probability of

erent target values can easily be estimated based on their

Juencies over the 14 training examples

9
= 0.64

p(PlayTennis = yes) = 7

5
p(PlayTennis = no) = 2= 0.36




"Iarly we can estimate the conditional probabilities. For example, those
“wind=strong” are

3
p(Wind = strong |PlayTennis = yes) = 5= 0.33

p (Wind = strog|PlayTennis = no) = - = 0.60

‘use these probability strengths and similar probabilities for other
ibutes. We then calculate v, as follows:

p(yes)p(sunny|yes)p(cool|yes)p(high|yes)P(strong|yes) = 0.0053
p(no)p(sunny|no)p(cool|no)p(high|no)p(strong|no) = 0.0206

paring the two probabilities the naive Bayes classifier assigns
(Tennis=no to this new instance based on the training data. The
ditional probability for the current example (considering that the sum
;o probabilities should be one) is 0.206

0.206 + 0053 079




Training examples for the target concept PlayTennis

High Weak
i Strong
Weak

Weak




Sources used for this lecture

Machine Learning In Action

By Peter Harrington

Statistics, Data Mining, and Machine Learining in

Astronomy

Z. Ilvezic, A. Connolly, J. VanderPlas & A. Gray




