


Logistic Regression: Definition

Regression is finding the best-fitting line to a dataset.
This is mainly an optimization problem. Logistic
regression is when we have a bunch of data and with
the data we try to build an equation to do classification
for us. To do this, we try to find the best-fit set of
parameters. Finding the “best fit” is regression and in
this way we train our classifier.

Regression can be defined as the relation between a
dependent variable, y, and a set of independent
variables, x, that describes the expectation value of y
given x: E[y|x].



1 The Regression Problem
/ .deﬁne three types of regression:

Linearity: when a parametric model is linear in all model parameters. A linear
regression can be defined as:

k
Fx10)= ) 8,g,(x)

p=1

' 're functions g, (x) do not depend on any free model parameters- this is linear
SS|on Regressmns of models that include nonlinear dependence on 6, such as

0) = 0, + 0,sin (0;x) is called nonlinear regression.

\ ~p|exity: The complexity of the error covariance matrix increases by increasing
number of independent variables. This is the limiting factor in nonlinear
ession.

r behavior: the uncertainties in the values of independent and dependent
ables, and their correlations, are the main factors that determine which

assion method to use. The structure of error covariance matrix and deviations
1 Gaussian error behavior, could make the problem complicated.



Regression for Linear Models

 simplest case for regression is the case of a linear model where an
apendent variable x and a dependent variable y, are considered defining the

Yi = Oy + 01x; + €

;" re 6, and 0, are the regression coefficients that we are trying to estimate and ”

' he additive noise. We could write the data likelihood as:

1

P}, 6,1) = T, 7= exn.(

—(yi—(6o+ 61x;))2 )

2 oi?

aking the logarithm of this posterior, we arrive at the classic definition of
ression in terms of log-likelihood

In®) = In(@l gy, 0) « Y (2= Got Bx0)

i




izing the log-likelihood as a function of the model parameters, 0, is achieved by minimizing the sum
‘square errors

S |y, — (6, + 6,x,)]
In(L) « Z Yi 0 1Xi
i=1

O;

aussian uncertainties the minimization of this equation results in

xandy are the mean values of x and y respectively.




Logistic Regression

Linear regression is the process of finding a function to
fit the x’s that vary linearly with y with the objective of
being able to use the function as a model for prediction.
The key assumption here is that both the predictor and
target variables are continuous. In other words, when x
increases, y also increases along the slope of the line.

Now, what happens if the target variable is not
continuous? Suppose the target variable is the response
to advertisement campaigns- if more than a threshold
number of customers buy, for example, then the
response is considered to be 1; if not, the response is 0.



Linear vs. Logistic
Regression

Linear Regression ,  Logistic Regression
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Classification with Logistic
Regression

Regression is basically finding the best-fitting line to a
dataset. This is mainly an optimization problem.
Logistic regression is when we have a bunch of data
and with the data we try to build an equation to do
classification for us. To do this, we try to find the best-
fit set of parameters. Finding the “best fit” is
regression and in this way we train our classifier.




In the case the response Y is discrete, the straight line is
no longer a fit. There is no gradual transition as the Y
value abruptly jumps from one binary outcome to
another. The straight line is therefore a poor fit for these

data. A better fit would be an S-shaped curve. If the
equation to this sigmoid curve is known, then it can be
used effectively as the straight line in the case of linear

regression.




Logistic regression is the process of obtaining an
appropriate non-linear curve to fit the data when the
target variable is discrete. How is the sigmoid curve
obtained? How does it relate to the predictors?




Probability of passing an exam as a function of hours studied

Probability of passing exam versus hours of studying
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dow Logistic Regression finds the Sigmoid Curve?

ase of linear regression, we only need two parameters, slope (b,) and zero-point

. This completely specifies the way the independent and dependent variables are
ted to one another. It is more complicated however, to find the parameters that fit
S-shaped curve.

en when the use of logistic regression is needed, the “y” is a yes/no type of

yonse. This is interpreted as the probability of an event happening (y=1) or not

A

ening (y=0). This can be constructed as follows:

y is an event (response, pass/fail etc)

"f\d p is the probability of the event happening (y=1)

‘ en (1 - p) is the probability of the event not happening (y=0)

"-'d p/(1-p) is the odds of the event happening




., logarithm of the odds, log (p/(1-p)) is linear in the predictor x, with log (p/(1-
p)) — log of the odds- called the logit function.

‘ logit can be specified as a linear function of the predictor, x, similar to the
linear regression model shown before.

git = log p/(1-p) =byx+b, (1)
4 for a more general case involving multiple independent variables, it is
Bt=b,+b, x, +b,x,+..+b x, (2)

_ each row of the predictor, the logit can now be computed. From the logit, it
now easy to compute the probability of the response y (happening or not
ppening) as

:’;e logit / (1 +e Iogit) (3)

e logistic regression then calculates the probability of y happening (i.e. y=1)-
Jation 3, given specific values of x from equation 2.



Logistic regression can be defined as a mathematical modeling approach in
\ fich a best-fitting model is selected to describe the relationship between
- _‘-'_eral independent variables and a dependent binomial response variable.

_4 om the data given, the x’s are known and using equations 2 and 3, we can
compute p for any value of x. In order to do this however, the coefficients in
Juation 2 (b values) need to be determined. Using a training sample, one
yuld compute the relation

l ':;f (1-p) 1)

Where y is the original outcome variable (which can be 0 or 1). And p is the
bability estimated by the logit equation. For a specific training sample, if
the actual outcome was y=0 and the model estimate of p was high (say 0.9)-
at is, the model was wrong- this quantity reduces to 0.1. This quantity is a
nplified form of the likelihood function, is maximized for good estimates and
inimized for poor estimates. If one calculates a summation of the likelihood
action across all the training data, then a high value indicates a good model
vice versa.



; ;is the independent variable and Y a dependent variable, how can we measure
: probability of Y being 1 (or 0)- (P(Y=1 | X) as a function of X?

'he linear regression models these probabilities as:
3 P(X)=B0 + B1X

he logistic regression equation is derived from the same equation except that the
dependent variable must only have categorical values. Logistic Regression does not
'ulate the outcome as 0 or 1, instead, it calculates the probability (ranges

tween 0 and 1) of a variable falling in class O or class 1. Thus, we can conclude

; the dependent variable must be positive and it should lie between 0 and 1 i.e.
1ust be less than 1. In order to meet the above-mentioned conditions, we must

the following:

Take the exponent of the equation, since the exponential of any value is a
positive number

.condly, a number divided by itself + 1 will always be less than 1

e(ﬁo+ﬁ1x)
o(BotBX) + 1

P(X) =




Derivation of logit

From Edureka web page.

e(Bo+B12)

PX) = —Gim 1 1

p(e(ﬁo+ﬁx)+1) = e(Bot+B1x)
p_ e(BO+Bx) + p = e(BO+le)

p f— e(ﬂ0+B1x) — p. e(BO+Bx)

p= e(BO'l'le) (1 — p)

p_ _ e(Bot+B1x)
(1-p)

In[ 51 = (Bo + A1)

| | A [




Consider the sigmoid function
o(z)=1/(1+e7)

At z=0, the value of the sigmoid is 0.5. For increasing values of z

it approaches unity and for decreasing values it approaches 0.

For the logistic regression classifier, we will take our features
and multiply each one by a weight and then add them up. This
result will be put into the sigmoid, giving a number between 0
and 1. Anything above 0.5 will be classified a 1 and anything
below 0.5 will be classified as a 0. The question now is what is

the best weight or regression coefficients to use? How do we
find them?




Often gradient decent or other non-linear optimization
methods is used to search for coefficients, b, with the
objective of maximizing the likelihood of correct
estimation p ¥. (1-p) " summed over all training

samples.




Optimization

'_' he input to the sigmoid function will be z, given by the
- relation

S ZEWoXot Wy Xg e+ WX,
In vector notation this can be written as
= W' X

~ The vector X is our input data and we want to find the best
~ coefficient w, so that this classifier will be as successful as
- possible. In order to do that, we need to use ideas from
~ optimization theory. We use optimization with gradient
~ascent. We will then see how we can use this method to
" find the best parameters to model our dataset.






8f (x,y)
VD) = aptay)
dy

y direction by the amount 9of(x,y)dy. Obviously the function f(x,y) must be
ned and differentiable around the point it is calculated.

nagnitude is the step-size, a. In vector notation this is defined as

w=w+ aV,f(w)




This step is repeated until we reach a stopping condition- either a
specific number of steps or the algorithm is within a certain
tolerance margin.

Gradient decent is similar to gradient ascent with the positive sign
changed to negative

wi=w-aV,f(w)

with the gradient descent we are trying to minimize some function
rather than maximize it




Gradient Descent

Gradient Ascent
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Flgure 5.2 The gradient ascent algorithm moves in the direction of the gradient evaluated at
each point. Starting with point PO, the gradient is evaluated and the function moves to the
next point, P1. The gradient is then reevaluated at P1, and the function moves to P2. This
cycle repeats until a stopping condition is met. The gradient operator always ensures that we're

moving in the best possible direction.




Examples of Sigmoid
Function
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Flgure 5.1 A plot of the sigmoid function on two scales; the top plot shows the sigmoid
from -5 to 5, and it exhibits a smooth transition. The bottom plot shows a much larger
scale where the sigmoid appears similar to a step function at x=0.




Example for Logistic Regression

Probability of passing an exam versus hours of study

Suppose we wish to answer the following question: A group of 20
students spend between 0 and 6 hours studying for an exam. How
does the number of hours spent studying affect the probability that
the student will pass the exam?

The reason for using logistic regression for this problem is that the
values of the dependent variable, pass and fail, while represented
by "1" and "0". If the problem was changed so that pass/fail was
replaced with the grade 0—100 (cardinal numbers), then regression
analysis could be used. The table shows the number of hours each
student spent studying, and whether they passed (1) or failed (0).
The graph shows the probability of passing the exam versus the
number of hours studying, with the logistic regression curve fitted to
the data.



'Hours 0:5070.75:1:41:25:1:5,1.75 2..2:252.50° 2,75 3.83 253,50 4- 4.25455 04755

- Pass

+ The logistic regression analysis gives the following output.

Coefficient | Std.Error s'a e m:;e

'“te"’e‘z _4.0777 '2'3; 0.0206

Hours 1.5046 2.393 | 0.0167




Probability of passing an exam as a function of hours studied

Probability of passing exam versus hours of studying
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he output indicates that hours studying is significantly associated with the probability
passing the exam as indicated by P values. Here we have the coefficients for the
\tercept -4.0777 and Hours = 1.5046. These coefficients are entered into the logistic
agression equation to estimate the odds (or probabilities) of passing the exam

| g—odds of passing exam = 1.5046 . Hours —4.0777 = 1.5046 . (Hours — 2.71)

)dds of passing exam = exp (1.5046 . (Hours — 2.71))

1
1+ exp (—(1.5046 . Hours — 4.0777))

. probability of passing exam =

'?‘_ e additional hour of study will increase log-odds of passing the exam by 1.5046 or
dds of passing exam by exp(1.5046) = 4.5.

or a student who studied 2 hours, entering the value Hourse=2 in the equation gives
e estimated probability of passing the exam of 0.26.




Sources used for this lecture

Machine Learning In Action

By Peter Harrington

Statistics, Data Mining, and Machine Learining in

Astronomy

Z. Ilvezic, A. Connolly, J. VanderPlas & A. Gray




