

¢ Bagging and Random Forest

- Bagging and Random Forest are ensamble learning methods (the idea of
;'i,,combining the outputs of multiple models through some kind of voting
~or averaging).Bagging averages the predictive results of a series of

~ bootstrap samples from a training set of data. Often applied to decision
~ trees, bagging is applicable to regression and many nonlinear model
~fitting or classification techniques. For a sample of N points in a training
,'f'set, bagging generates K equal sized bootstrap samples from which one
3 could estimate f. (x) with the final estimator given as the average of f, (x)

~ values.

- Random forest generates a series of decision trees from these bootstrap
E ‘_amples. The features on which to generate the trees is selected at

" random from the full set of features in the data. The final classification

~ from random forest is based on the averaging of the classifications of

~ each of the individual decision trees. Random forest addresses

4 jmitaﬁons of decision trees: overfitting of the data.

-

To Build a Random Forest

To generate a random forest we define n, the number of trees
that we will generate, and m, the number of attributes that
we will consider splitting on at each level of the tree. For each
decision tree a subsample of the data is selected from the full
dataset (bootstrap sampling). At each node of the tree, a set
of m variables are randomly selected and the split criteria is
evaluated for each of these attributes (different set of m
attributes for each node). The classification is derived from
the mean or mode of the results from all the trees. By keeping
m small compared to the number of features controls the
complexity of the models and reduces overfitting.

In simple words, Random forest builds multiple decision
trees (called the forest) and glues them together to get a
more accurate and stable prediction. The forest it builds
is a collection of Decision Trees, trained with the bagging

method.

Random Forest

All Data

subset subset subset
tree tree tree

¢ o o
A /N A
on 4 o mo
A AN A

'. The Difference between Decision Tree and Random Forest

xample: Suppose you are planing to buy a house. The range of important
)arameters you consider for buying the house are:

\umber of bedrooms,

arking space

wvailable facilities

hese parameters are called predictor variables, which are used to find the
asponse variables. Using these parameters, we could build a decision tree.

4

ecision trees are built on the entire parameters space.

landom forest is an ensemble of decision trees. It randomly selects a set of
arameters and creates a decision tree for each set of chosen parameters

" Example of a Decision Tree when using all the available Data

(From edureka webpage)

edureka! Price of the house

< $10,000 > $10,000

Locality Don't Buy
No

Parking space Don't Buy

Yes No

Facilities available

Don't Buy

ﬂl

ndom forest is an ensemble of decision trees. It randomly selects a set of
rameters and creates a decision tree of each set of chosen parameters.

Next figure shows a set of three decision trees with each tree taking only three
parameters from the entire dataset. Each tree predicts the outcome based on the
spective predictor variables used in that tree and takes the average of the

sults from all the decision trees in the random forest.

er creating multiple Decision trees using this method, each tree selects or votes
2 class (in this case the decision trees will choose whether or not a house is
ught), and the class receiving the most votes by a simple majority is termed as

> predicted class.

> 4o

Decision tree using all the parameters

edureka! Price of the house

< $10,000 > $10,000

Locality Don't Buy
No

Parking space Don't Buy

Yes No

Facilities available

Don't Buy

Three Decision Trees based on sub-sets of the parameters

edureka!

Price of the house

< $10,000 > $10,000

Yes No

of Bedrooms

<1

Don't Buy

edureka! # of Bedrooms

>1 <1

Parking space Don't Buy

Yes No

Don't Buy

No

edureka! Locality

Yes No

Price of the house Don't Buy
< $10,000 > $10,000
Facilities available Don't Buy

Advantages of Random Forest compared to Decision Trees

at random forest has that decision trees do not?

Even though Decision trees are convenient and easily implemented, they lack
accuracy. Decision trees work very effectively with the training data that was used
to build them, but they’re not flexible when it comes to classifying the new sample.
. hich means that the accuracy during testing phase is very low. This happens due
0 a process called Over-fitting.

0 'r -fitting occurs when a model studies the training data to such an extent that it
atlvely influences the performance of the model on new data.

s means that the disturbance in the training data is recorded and learned as
1cepts by the model. But the problem here is that these concepts do not apply
the testing data and negatively impact the model’s ability to classify the new
d: a hence reducing the accuracy on the testing data.

S is where Random Forest comes in. It is based on the idea of bagging, which is
d to reduce the variation in the predictions by combining the result of multiple
Decision trees on different samples of the data set.

>3

| Definition and Terminologies

upport vector machine (SVM) is a classification method. It works on the
orinciple of fitting a boundary to a region of points that are all alike (belonging to
the same class). Once a boundary is fitted on a training sample, for any new points
;f st sample) that need to be classified, one must check if they lie inside the
)oundary or not. What is needed here is a set of points that can help to fix the
ooundary. These data points are called support vectors because they support the
f yjundary. Why are they called vectors? Because each data point or observation is
a vector: that is, it is a row of data that contains values for a number of different
attributes.

n 2-D plots, the line separating the data is just a line. In 3-D this is a plane
separating the data. This could be extended to higher dimensions. The plane

: parating data in high dimensions is called a hyperplane. The hyperplane is our
decision boundary. Everything on one side belongs to one class and everything on
the other side belongs to a different class.

- When the two classes are completely separated by drawing a linear line
Sbetween them, it is called linearly separable.

- The decision boundary should be optimized so that the data from different

A classes are as far away from it as possible. The farther the data are from the
boundary more confident we are regarding the classification (Figure 4). In some
~ cases more than one decision boundary is found. The optimum is the one that

~ maximizes distances from all the points from the two classes. In this case, the

! points have larger margins and therefore, classifications would be more reliable.
- The aim here is to find the points closest to the separating hyperplane and make
~sure this is as far apart from the separating line as possible. This is known as
~margin. We want to have the greatest possible margin. This is because if we

- make a mistake or trained our classifier on limited data, we want it to be as

~ robust as possible. The points closest to the separating hyperplane are known as
~support vectors. Therefore, the problem reduces to maximizing the distance

- from the separating line to support vectors.

g

Summary

\ support vector machine constructs a hyperplane or a set of
lyperplanes in high dimensional space which can be used for
lassification, regression or outlier detection. The best
eparation is achieved by the hyperspace that has the largest
listance to the nearest training data point of any class (called
,argin). The larger the margin, the smaller is the errorin the
lassifier.

Linearly separable

Functional Margin

T

T

- L

>3 0 2
10

6 8 10 12 14

°2 0 2 4 6

Figure 6.2 Li
Figure 6.3 The distance from point A to the

separating plane is measured by a line normal
to the separating plane.

é lb 1,2 14
ly separable data is sh in frame A. Frames B, C, and D show
possible valid lines separating the two classes of data.

12
10
0.8
0.6
0.4
0.2
0.0

0203200 02 04 06 08 10

T . - S—

Data projected to R~2

Data in R"3 (separable)

1.0
0.5

[|
0.0 &

-0.5
1.0) i XUabel

1353005 00 05 10 15 44 -3 -2 -1 0 1

Figure 6.1 Four examples of datasets that aren’t linearly separable

It is not always possible to ensure that the data are
cleanly separable and rare to find that the data are
linearly separable. When this happens there may be
many points within the margin. In this case the best
hyperplane is the one that has the minimum number of
such points within the margin. To insure this, a penalty is
charged for every contaminant inside the margin and the
hyperplane that has the minimum penalty is chosen. In
the next Figure & represents the penalty that is applied
for each error and the sum of all such errors is minimized
to get the best separation.

¥ In this Figure a number of
\yperplanes can be found to separate
the same data set. The boundary that
separates the classes with minimum
~misclassification is the best. In this
lata set, the algorithm that applies to

_ the third plot has zero
misclassifications and therfore is the
best one. Additionally, a boundary
line that ensures that the average
eometric distance between the two
regions (or classes) is maximized, is
~even better. This n-dimensional
distance is called a margin

e are given a training dataset of n points of the form

(yl)wwv@n'yﬂ) where y are either 1 or -1, each indicating the class

[0 which the vector x; belongs. Each x; is a p-dimensional real vector.
We want to find the maximum margin hyperplane that divides the
group of points x. for which y.=1 to which y.= -1 which is defined so
hat the distance between the hyperplane and the nearest point X.
from either group is maximized.

* yper plane can be written in the form w.x-b = 0 where w

' fhe normal vector to the hyperplane. The offset of the hyperplane

'rom the origin along the normal vector W is LA
- Iwll

A,

How SVM Works

fthe training data is linearly separable, we can select two parallel hyperplanes that
arates the two classes of data, so that the distance between them is as large as
sible. The region between these two hyperplanes is called the margin and the
Kimum margin hyperplane is the hyperplane that lies halfway between them.

se hyperplanes can be described by the equations

w.Xx—b =1 (anything on or above this boundary is of one class — class 1

and

W.X —b = —1 (anything on or below this boundary is other class — class — 1

2

lw|

:distance between these two hyperplanes is

faximize the distance between the planes, we need to minimize | |,

distance is computed using the equation for distance from a point to a plane. We
' need to avoid data points falling in the margins. Therefore, we add the following
traint.

W.f—b gllfyl=1

nese constraints state that each data point must lie on the correct side of the
argin. Therefore, this can be re-written as

y;(W.%;—b)21 foralll Si =n

can now define the optimization problem as to minimize|| @ |: subject to

y;(W,x;—b) 21, fori=1,..,n.

1e W and b that optimizes this, determines our classifier. It is clear that the
aximum margin hyperplane is completely determined by those x, values that lie
arest to it. These x; ’s are called support vectors.

ost cases the data are not linearly separable. In such circumstances we form the function
max(0,1 —y;(W .X; — b))

te that y; is the ith target (-1 or 1) and (w_%; — b) is the current output. This
nction is zero if the first constraint above I1s sausnea- in other words, if x; lies on

2 correct side of the margin. For data on the wrong side of the margin, the
ction’s value is proportional to the distance from the margin. We then minimize

n
1
[E > max(0,1 - y,(®.% — b)) | + Al
i=1

lere the parameter i determines the trade-off between increasing the margin size

d ensuring that the x- lie on the correct side of the margin. For small values of j, the

cond term in the right hand side of the equation becomes negligible and therefore, it
behave similar to the previous case if the input data are linearly classifiable.

Computing SVM

To compute SVM, one needs to minimize the expression

n
1
[; Z max(0,1 —y;(w.x; — b)) | + 1 ||w||?
i=1

There are different ways to minimize this function

Minimization Methods

;hod i

f’reduces the function to a quadratic programming problem. This is a method
t optimizes (minimize or maximize) a quadratic function of several variables
)ject to linear constraints on these variables.

Foreachi € {l,....1n} we introduce variable {; = max(0, 1 — y;(w.x; — b)) wit
being the smallest nonnegative number satisfying y;(w.x; —b)=>1- (.
Therefore, we can write the optimization problem as

minimize — Z{l + A ||w||?

Subjectto y;(w.x; —b) 21— {;and (; > 0 for all j values. This is called the primal
problem. ”

Method 2:

The other method to minimize the function

n
1
fw,b) == max(0,1-y,(W.2, — b)) | + A W]
i=1

Is sub-gradient descent algorithm. Here f (w,b) is a convex function of w
and b . Therefore traditional gradient descent method can be adopted

where instead of taking a step in the direction of the functions gradient,
an step is taken in the direction of a vector selected from the function’s

sub-gradient.

Kernel Functions

Kernel functions provide the option of transforming non-linear
space into linear ones. There are a range of non-linear kernels from
simple polynomial basis functions to sigmoid functions. We need to
choose the appropriate kernel function.

With a large number of attributes in a dataset, it is hard to know
which kernel would work best. The most commonly used ones are
polynomials. It is often a good idea to start with a quadratic
polynomial and move to using some exotic kernel functions until the
required accuracy is reached.

While the original problem can be stated in a finite dimensional space,
sometimes the sets that discriminate are not linearly separable in that
space. For this reason the original finite dimensional space is mapped
into @ much higher dimensional space, making the separation easier in
that space. The mapping used by SVM mechanism is designed to
ensure that dot products can be computed in terms of variables in the
original space by defining them in terms of a kernel function k(x,y)-
(Figure 6). The hyperplanes in higher dimensional space are defined as
the set of points whose dot products with a vector in that space is
constant. The vectors defining the hyperplanes are chosen to be linear
combinations with coefficients a. of images of feature vectors x; that
oC :\ r in the data base. With this choice of a hyperplane, the pomts X

in the feature space that are mapped into the hyperplane are defined
by he relation

Zi aik (xi, X) = constant

-
e ~ .

(o]

(@]

Kernel Trick

What do we do if the data are not linearly separable? We use
Kernels. The data that are not separable in n dimensional space may
be linearly separable in higher dimensional space.

Lets say the decision boundary. i.e the hyperplane separating the
classes have the weights (Co-coefficients) given by vector w. This is
what we need to find. We try to maximize the distance from this w
vector to the nearest points (support vectors) so this now becomes
our constraint. Rewriting the equation

L= 2 IwlE =) aly. (.5 +b)~ 1

We minimize this equation

aL
£='Ziaiyi =0

1)
L= 2 (z a;yix;) (z a;y;X;) — (Z a;YiX; z a;yix_j) — Z a;y;b + Z Q;
i F 7 i i

Therefore

= Yam 3 Y warns

;'ounts the number of data points in our training data. y’s denote the

utputs of the data points, which for our convenience, we express as +1 or -1.
is the feature vector in each training example. a is the constraints or
igrangian multipliers. Lagrangian multipliers are used to include the
onstraints for solving a minimization or maximization problems, thus

;abllng us to not worry about them while reaching the solution.

While minimizing for W(alpha) [Weight vector as a function of
alpha] we see the term x*x(transpose). That is to say that we do not
exactly need the exact data points, but only their inner products to
compute our decision boundary.

What it implies is that if we want transform our existing data into a
higher dimensional data, which in many cases help us classify better
(see the image below for an example) we need not compute the
exact transformation of our data, we just need the inner product of
our data in that higher dimensional space. This works for datasets
which aren’t linearly separable!

It’s a lot easier to get the inner product in a higher dimensional
space than the actual points in a higher dimensional space.
Polynomial kernels by simply using exponents of ‘d’ to map our data
into a ‘d” dimensional space can be effective for our solution.

Summary

The Kernel Trick is a technique in SVM. These are
functions which take low dimensional input space and
transfer them into a higher dimensional space. It
convers problems that are not separate (and hence
complex) to separate problem (simpler to solve). It
carries on data transformation and finds out the
process that would separate the data, based on the
labels and outputs defined.

By transforming data points from lower to higher dimension, we change

the data to linearly separable

Data projected to R~2 (nonseparable)

Data in R~ 3 (separable)

0.0
X Label

Kernel Trick

It is hard to fit a hyperplane Define z=(x? +y?)"? that
to separate these data separates the data on x-z space

Sources used for this lecture

1. Machine Learning In Action
By Peter Harrington
2. Data Science: Concepts and Practice

By Vijay Kotu Bala Deshpande

