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Principle Component Analysis (PCA):

Introduction
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E :kinciple Component Analysis (PCA) is a technique to study the internal
“structure of the data in a way that best explains the variance in the data. If a
“multivariate dataset is visualised as a set of coordinates in a high dimensional
»' Jata space (1 axis per variable), PCA can supply the user with a lower-

3 f_imensional picture, a projection of this object when viewed from its most

| 1formative viewpoint: This is done by using only the first few principal
mponents so that the dimensionality of the transformed data is reduced.

: )CA can be thought of as fitting an n-dimensional ellipsoid to the data, where

4 ch axis of the ellipsoid represents a principal component. If some axis of the
“ellipsoid is small, then the variance along that axis is also small, and by omitting
1at axis and its corresponding principal component from our representation of
~- he dataset, we lose only a small amount of information (Figure 1).
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Example of the principle
component in the direction of

maximum variance and the
second component
orthogonal to it (Fig 1).

(from Machine Learning in
Action” by Peter Harrington)

Fig 1: Finding the component
with maximum variance

% 7 8 9 10 11 12 13 14
Figure 13.1 Three choices for lines that span
the entire dataset. Line B is the longest and ac-
counts for the most variability in the dataset.




Fig 2: Reduction from 2 to
one dimension

- Example of results after
- applying the PCA and reducing
- dimensionality (Fig 2)

fi'(from Machine Learning in
~Action” by Peter Harrington)
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Flgure 12.2  Three classes in two dimensions, When
the PCA is applied to this dataset, we can throw out
one dimension, and the classification problem be-
comes easier.




To find the axes of the ellipsoid, we must first subtract the mean of each
“variable from the dataset to center the data around the origin. Then, we
~compute the covariance matrix of the data, and calculate the eigenvalues and
~corresponding eigenvectors of this covariance matrix. Then we must normalize
~each of the orthogonal eigenvectors to become unit vectors. Once this is done,
~each of the mutually orthogonal, unit eigenvectors can be interpreted as an axis
- of the ellipsoid fitted to the data. This choice of basis will transform our

" covariance matrix into a diagonal form with the diagonal elements representing
~the variance of each axis. The proportion of the variance that each eigenvector
Zepresents can be calculated by dividing the eigenvalue corresponding to that
~eigenvector by the sum of all eigenvalues (Figure 2).

PCA is defined as an orthogonal linear transformation that transforms data to a
ew coordinate system such that the greatest variance by some projection of
~the data comes to lie on the first coordinate (called first principle component),
~ the second greatest variance on the second coordinate and so on. (Figure 1).
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Refresher from Statistics Lecture

Some Definitions

Standard Deviation: The standard deviation of a dataset is the measure of
the deviation of dataset from their mean value. For a set of data X =

. _ Xi — .
{x,,%,, ..., X, }, the mean is defined as ¥ = Yi-, —. Here X is the mean.

The standard deviation is defined as

[z (x; — x)

Variance

Variance is another expression of spread of data in a dataset. It is very similar to the
standard deviation. The variance is defined as

C (x; — x)?

_ n—1
=1

The variance will be used in the next section where we define covariance
matrix.




Covariance

he last two measures we have looked at are purely 1-dimensional. this could

pe: heights of all the people in the room, marks for the last exam etc. However
nany data sets have more than one dimension, and the aim of the statistical
analysis of these data sets is usually to see if there is any relationship between
he dimensions. For example, we might have as our data set both the height of
all the students in a class, and the mark they received for that paper. We could
then perform statistical analysis to see if the height of a student has any effect
n their mark.

andard deviation and variance only operate on 1 dimension, so that you could
only calculate the standard deviation for each dimension of the data set
lependently of the other dimensions. However, it is useful to have a similar
asure to find out how much the dimensions vary from the mean with respect
each other.



variance is such a measure. Covariance is always measured between 2
mensions. If you calculate the covariance between one dimension and itself, you
:} the variance. So, if you had a 3-dimensional data set (x,y,z), then you could
fmate the variance between x and y dimensions, x and z dimensions and y and z

ensions. Measuring the covariance between (x and x) or (y and y) or (z and z)

ves the variance for x, y and z respectively. The formula for covariance is similar
that for the variance. The variance is expressed as

. [2 (x; — x)(xl = x)]

where the square term is expanded. Based on this, the formula for
covariance 1s

cov (x,y) = lz % = :)_(};l — 7




f{;.How does this work? Lets use some example data. Imagine we
~ have collected some 2-dimensional data about the hours in total

_,,that students spent studying and the mark that they received. So
- we have two dimensions, the first is the dimension, the hours
studied, and the second is the dimension, the mark received. We
~ can calculate the covariance between the Hours of study done

~ and the Mark received. If the covariance is positive, it means that
~ the number of hours studied and the grades received increase

~ together. A negative covariance means the opposite- the grades

~ decrease with an increase in the number of hours studied. If the
~ covariance is zero, it means that the two dimensions are

~ independent from one another. Obviously, cov x,y=cov y,Xx.
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Covariance Matrix

As we discussed, covariance could always be measured
between two dimensions. Therefore, if we have a dataset in
more than two dimensions, there is more than one covariance
measurement that can be calculated. From 3 dimensional data
set (x,y,z) one could calculate cov (x,y), cov( x,z) and cov (y,z).

We could get all covariance values between all different
dimensions in a matrix. The covariance matrix with n
dimensions is defined as a matrix with elements being the
covariance of two separate dimensions. For example, the
covariance matrix for an imaginary 3 dimensional dataset
using dimensions x, y and z has 3 rows and 3 columns as:



- Covariance matrix:

cov (x,x) cov(x,y) cov(x,z)

c= | cov(y,x) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z z)

~ Asis clear, the diagonal elements in the matrix are the
- covariance of one of the dimensions with itself. These
~ are the variances for that dimension. Also, since cov

- a,b=cov b,a, the matrix is symmetrical about the main

- diagonal.
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Formulation of PCA

. The Principle Component Analysis (PCA) is a way of identifying

i - patterns in data, and expressing the data in such a way as to

highlight their similarities and differences. Since patterns in
data can be hard to find in data of high dimension, where the

~ luxury of graphical representation is not available, PCA is a

powerful tool for analyzing data (Fig 3a). Once you find these
- patterns in the data, you compress the data (by reducing the

- number of dimensions without much lose of information)-

"' (Figure 3b).



(from Machine Learning in Action” by Peter Harrington)

Figure 3b: The rate of change of
variance as a function of principle
components. As the principle
. components increase, the variance
‘ decreases.

Figure 3a: Dimensionality
reduction after applying the
PCA. All the points lie on the

same line (1 dimensional)

Percentage of Variance

5 10 15 20
Principal Component Number

Figure 13.4 P of total vari ined in the first 20 principal components. From this plot, Figure 13.3 The original dataset
you can see that most of the variance is contained in the first few principal components, and little infor- (triangles) plotted with the first
mation would be lost by dropping the higher ones. If we kept only the first six principal components, we'd s 9 0 11 12 13 14 principal component (circles)
reduce our dataset from 590 features to 6 features, almost a 100:1 compression.




To formulate PCA, consider a data matrix, X, where the
sample mean of each column is shifted to zero and each
of the n rows represent a different repetition of the
experiment and each of the p columns gives a particular
kind of features. The transformation is defined as a set of
p-dimensional vectors w;= (w,,w,,...,w,), that map each
row vector x. of X to a new vector of pr|n0|ple component
scores t.= (t1,t2, b

t,i=x,w, fori=1,..,kandk=1, ...,/

This is done in a way that the individual variables ¢, .. .,{,
of t considered over the dataset successively inherit the
maximum possible variance from x, with each weight
vector w constrained to be a unit vector.



In order to maximize the variance, the first vector w4 has to satisfy
wy = argmax{y;(t,); } = argmax{};(x; w)?}
for ||w|| = 1. Alternatively, writing this in matrix form gives:
w; = arg max{||Xw|?} = argmax{WTX"XW }
Since w; has been defined to be a unit vector, it equivalently also satisfies

WTXTXW
wrw

W, = arg max {

With W, found, the first principle component of a data vector x; can then be
given as ty;) = X;.w; In the transformed coordinates or as the

corresponding vector in the original variables {X;. w, jw,




Further Components

The k-th component can be found by subtracting the first principle
components from X

k
X, =X— Zx AT
s=1

We now need to find the weight vector (w) that extracts the maximum
variance from this new data matrix

2 wiX! X,w
Wy = arg max{”X,c w| } = arg max{w}
This gives the remaining eigenvectors of XT X with the maximum values of
the quantity in brackets given by their corresponding eigenvalues (Figure
3b). Therefore, the weight vectors are eigenvectors of X X. The k-th
principle component of a data vector X;can therefore be given as t;, = x;. wy
in the transformed coordinates or as the corresponding vector in the space of
the original variables {x;. w; } w; where wy is the k-th eigenvector of X7 X.
The full principle component decomposition of X can therefore be given as

T=XW

W is a » x p matrix whose columns are the eigenvectors of XTX
where pxp g




Demonstration of PCA Technique

We now follow the PCA technique step-by-step on a dataset to
~show how the technique works.

'tep 1- Get the data: For simplicity, we take 2 dimensional data.
- This allows simple visualization of the data (Fig 4)

“Step 2- Subtraction of the mean: We take the mean for each
dimension separately and subtract the mean from each of the data
~dimensions. Therefore, all the x values have a mean <x> (the
~mean of x values of all the data points) and all the y values have

" mean <y> subtracted from them. This produces a data set whose

-~ mean is zero.

“Step 3- Calculate the covariance matrix: The covariance matrix
IS calculated the same way as we discussed in the last section.
~Since the data is 2 dimensional, the covariance matrix also has

two dimensions

4
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o — (616555556 615444444
U\ 615444444 716555556

f.nce the non-diagonal matrix elements here are positive, we
nould expect that both the x and y variables increase together.

; lep 4- Calculating the eigenvalues and eigenvectors: Since the
'variance matrix is square, we can calculate the eigenvalue and
igenvector for the matrix. This is an important step in |
xtracting information from our data. These are estimates as
escribed in the background section. For the covariance matrix




_ , - (0.049)
eigenvalues = 1284

eigenvectors = (_00677375 :8?;;)

- Both the eigenvectors here are unit vectors- with length unity. The
~data are shown in Figure 3. This shows, as expected from the
covariance matrix, both variables increase together (covariance

~ matrix has positive diagonal elements). The eigenvectors are

- shown as diagonal lines on the plot. They are perpendicular to one
~another. The eigenvectors also provide information about the

~ pattern in the data- one of the eigenvectors goes through the data

~ like a best-fit line, showing how these datasets are correlated along
" the line. The second eigenvector gives information about the less
~important pattern in the data. The point to take away here is that by
~ calculating the eigenvectors of the covariance matrix we have been
able to extract lines that characterize the data (Figure 5).




The Original Data

Figure 4. PCA example data.
Original data on the left,
data with the means
subtracted on the right. A 2-

D plot of the data is also

X
69
-1.31
39
09
DataAdjust= 1.29
49
19
-81
-31
=71

shown (taken from Machine
Learning in action by Peter
Harrington)




eans subtracted data with the eigenvalues

Figure 5. A plot of the
normalized data (means
subtracted) with the
eigenvectors of the
covariance matrix overlaid
on top. The axes are rotated
by 90 deg. These are the 15t
and 2" PCA components

Mean adjusted data with eigenvectors overlayed

st dat”
(-. 740682469/ 671 52)"x
(- 671855252/ TA06B2469)"x

(from Machine Learning in
Action by Peter Harrington)




SStep 5: Choosing components and forming a feature vector: Hereis

~where dimensionality reduction (data compression) takes place. It is

~ clear that the eigenvalues are different (from the last section). The
~eigenvector with the highest eigenvalue is the principle component.

=In the above example, the eigenvector with the largest elgenvalue

~was the one that went through the middle of the data. That is the

- most significant relationship between the data dimensions. When the

~ eigenvectors are estimated for covariance matrices, the next step is

“to order them by the eigenvalues- from the highest to the lowest.

- This gives the components in the order of significance. One could

~always ignore the components of lesser significance. In this case, one

“loses some information, but if the eigenvalues are small, the loss is

- not much. Therefore, if you leave some components out, the final

- data set will have less dimensions than the original. For example, if

- you originally have n dimensions in the data, and you calculate n

~eigenvectors and eigenvalues, and choose only the first p

~ eigenvectors, then the final data set has only p dimensions.

- r




fe could form a feature vector now that is constructed by

King the eigenvectors that you want to keep from the list of

' eigenvectors and forming a column matrix with these
Jenvectors. Therefore, given the fact that we only have 2
igenvectors, we have two choices. We can either form a feature
2ctor with both the eigenvectors:

§!

(Co73s “0s77)

“can choose to leave out the smaller, less significant
mponent and only have a single column.

(—0.677)
—0.735




£

Step 6- Driving the new dataset: Once we have chosen the
~ components (eigenvectors) that we wish to keep in our data and
- formed a feature vector, we take the transpose of the vector and
~ multiply it on the left of the original dataset. We use the transpose
~ and hence, the eigenvectors are now in the rows with each row
- holding a separate dimension. This will give us the original data terms
- of vectors we chose. The original data were in terms of x and y axes.
~ We could display them in terms of any axes we wish to. For example,
~ we could express the data in terms of eigenvector axes. When the
~ dataset has reduced dimensionality (when we left some eigenvectors
~ out), the new data are only in terms of the vectors we decided to
¥ »'keep. Here we do this for our data and for each of the feature
~ vectors. We take the transpose of the result in each case to
- reproduce the data. Of course, if we use all the dimensions (all
~ eigenvectors), we reproduce the original data (Figure 5).
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In the case of keeping both eigenvectors for the
transformation, we get the data and the plot found in

Figure 6. This plot is basically the original data, rotated
so that the eigenvectors are the axes. This is

understandable since we have lost no information in
this decomposition.




Figure 6. The table of data by
applying PCA using both
eigenvectors and a plot of the
new data points. The pattern
of the data is observed

around the eigenvector (from
Machine Learning in Action By
Peter Harrington)

xr

)

-.827970186

1.77758033

-992197494

-.274210416

Transformed Data= -1.67580142
-912949103
0991094375

1.14457216

438046137

1.22382056

- 175115307
142857227
384374989
130417207
-.209498461
175282444
-.349824698
0464172582
0177646297

-.162675287

Data transformed with 2 eigenvectors
T T

L T '-*t'"




he other transformation we can make is by taking only the eigenvector with
1e largest eigenvalue. The result is listed in the following table. As expected,
only has a single dimension. If you compare this data set with the one
sulting from using both eigenvectors, you will notice that this data set is
xactly the first column of the other. So, if you were to plot this data, it

ould be 1 dimensional, and would be points on a line in exactly the positions
 the points in the plot in Figure 7. We have effectively thrown away the
hole other axis, which is the other eigenvector. Following table is the data
ter transforming using only the most significant eigenvector.

Transformed Data (Single eigenvector)
X
- 827970186
1,77758033
-992197494
-.274210416
-1,67580142
-912949103
0991094375
1.14457216
A38046137
1.22382056




So what have we done here?

~ Basically we have transformed our

- data so that is expressed in terms
~ of the patterns between them,

~ where the patterns are the lines
- that most closely describe the

- relationships between the data.

- This is helpful because we have

~ now classified our data point as a
- combination of the contributions
~ from each of those lines. Initially
- we had the simple and axes.

- (From Machine Learning in Action
- by Peter Harrington)

Fig 7. Reconstruction from the
data that was derived using a
single eigenvector. Dimension is
reduced from two to one

Qriginal data restored using only a single eigenvecior
' * fossyplusmean.dar® -




Source used for this lecture

Machine Learning in Action by Peter Harrington







Introduction

Often, a few pieces of data in our dataset can contain most of the
information in our dataset. The other information in the matrix is
10ise or irrelevant. In linear algebra, there are many techniques for
decomposing matrices. The decomposition is done to put the
',riginal matrix in a new form that’s easier to work with. The new
form is a product of two or more matrices. This decomposition can
i’;- thought of like factoring in algebra. How can we factor 12 into
the product of two numbers? (1,12), (2,6), and (3,4) are all valid
answers.

‘The various matrix factorization techniques have different properties
that are more suited for one application or another. One of the most
common factorizations is the Single Value Decomposition (SVD) .
The SVD takes an original data set matrix called A, and

e ecomposes it into three matrices called U, = and v




The SVD is used to represent our original data
set with a much smaller data set. In doing so,
we remove noise and redundant information.
In other words, SVD will extract information

from a set of noisy data.

The SVD is a kind of matrix factorization which
will break down our data matrix into separate
parts.




e singular value decomposition states that every n x p matrix can
‘be written as the product of three matrices: A=U X VT where

¢ U is an orthogonal n x n matrix

' 2 is a diagonal n x p matrix. In practice, the diagonal elements are
~ ordered so that Zii > Zjj for all i < j.

" ':;RV is an orthogonal p x p matrix and V' represents a matrix
- transpose.

‘The SVD represents the essential geometry of a linear

“transformation. It tells us that every linear transformation is a

composition of three fundamental actions. Reading the equation
om right to left: The



", [he matrix V represents a rotation or reflection of vectors in the
- p-dimensional domain.

¢ The matrix X represents a linear dilation or contraction along
 each of the p coordinate directions. If n # p, this step also

~ canonically embeds (or projects) the p-dimensional domain
_into the n-dimensional range.

# The matrix U represents a rotation or reflection of vectors in
~ the n-dimensional range.

¢ Thus the SVD specifies that every linear transformation is
- fundamentally a rotation or reflection, followed by a scaling,
~ followed by another rotation or reflection.



Ift e original data set is size mxn , then U will be mxm, 2 will be
mxn, and VT will be nxn. Let’s erte this out on one Ilne to be clear

(t 2 subscript is the matrix dimensions):

Al i e s

mm “=—mn

U a rotation, X' is stretch and V' is rotation (Figure **).

The decomposition creates the = which will have only diagonal
elements with all the other elements of this matrix being zero.
Another convention is that the diagonal elements of X are sorted
from largest to smallest. These diagonal elements are called
singular values and they correspond to the singular values of our
original data set, A. on principal component analysis, we found the
eigenvalues of a matrix. These eigenvalues tell us what features
were most important in our data set. The same thing is true about
the singular values in 2.



M=UX-V*

Fig 1.The matrixes defined lead to rotation (VT), stretching () and
- rotation (U). Therefore the matrix M = U = VT when applied on a
~ vector (unit vector) causes rotation, stretching and rotation




- The single values and eigenvalues are related. Our singular
“values are the square root of the eigenvalues of AA’

ATA = (USV)T(USVT) = (VSUT) (USVT)= V32V

- RVERYS YRVIRVERVE Y

his is an eigenvalue equation showing that 3# is the
igenvalue of the matrix A. Similarly

SATAU=(USV)T(USV)U=SVIVSUTU=U3RUTU =
: U 32

"aning that 2 is the eigenvalue of U.




M=U =z V

mxn mxm mxn nxn

Fig 2: Shows the matrix combination in SVD




~ Often after a certain number of singular values (call this r ) of
" a data set, the other values will drop to zero. This means that
" the data set has only r important features, and the rest of the
~features are noise or repeats.

3 I'he Singular-Value Decomposition, or SVD for short, is a
matrix decomposition method for reducing a matrix to its
’_pnstituent parts in order to make certain subsequent matrix
~ calculations simpler (Figure 2).



Calculating the SVD consists of finding the eigenvalues
and eigenvectors of AATand ATA. The eigenvectors of
ATA make up the columns of V, the eigenvectors of
AAT make up the columns of U. Also, the singular

values in X are square roots of eigenvalues from AA" or
ATA. The singular values are the diagonal entries of the
2'matrix and are arranged in descending order. The
singular values are always real numbers. If the matrix A
is a real matrix, then U and V are also real.




tutorial.pdf

Step 1. Compute its transpose AT and ATA.

Since H . then, . P
T =
A= |, 5 A'A .




Step 2. Determine the eigenvalues of ATA and sort these in descending order, in the absolute
sense. Square roots these to obtain the singular values of A.

| ATA a1 | = @5-c)@5-c)- (-15)(-15) =0

2 2,
characteristic equation @~ —— c®-50c + 400=0

The guadratic equation gives two values. \l’
In decreasing order, these are —— |40 | > 10|

eigenvalues — c,= 40 c 5= 10

singularvalues —s sq = Vg =63245 > s,= Vg =3.1622




Step 3. Construct diagonal matrix S by placing singular values in descending order along its
diagonal. Compute its inverse, S™.

63245 0O -1 01581 O
S= s =
0 3.1622 0 0.3162




Step 4. Use the ordered eigenvalues from step 2 and compute the eigenvectors of ATA. Place
these eigenvectors along the columns of V and compute its transpose, V.

far c1=40 forc2=1E|

25-40 -15 -
ATA o = { ]= Y
-15 25-40 -

(ATA -cl) X1 =0

15

-15}(1 + -15)(2 = 15)(1 + -15"2
-15}(1 + -153(2 -15X1 + 15"2

Solving for}(2 for either equation: x2 = - x4 Solving for X for either equation: X2 = x4




Dividing by its length, Dividing by its length,

‘-‘Xz + x2

1 2
"1/Li|

07071 07071
[x1 x] s
g 07071 0.7071

0.7071 - 0.7071

0.7071 0.7071




Step 5. Compute U as U = AVS™. To complete the proof, compute the full SVD using A = USV™.

07071 0.7071]
-0.7071  0.7071

(01118 0.2236]

01118 0.2236]
[0.4472 0.3944]

| 0.8944 -0.4472

| 0.8544 04472 | 0 31622

07071 0.7071

(04472 08944 | [63245 0 [D.?D?1 -n_?n?j

(04472 08944 | [4.4721  -4.4727]

0.8944 -0.4472| | 22360 22360

[ 3.9998 0 |

| 29999 5




The orthogonal nature of the V and U matrices is evident by inspecting their eigenvectors. This
can be demonstrated by computing dot products between column vectors. All dot products are
equal to zero. Alternatively, we can plot these and see they are all orthogonal.

(0.4472, 0.3944)
(0.7071,0.7071)

| NN TN Y T S T Y oy o |

Dimension 1

4 05 06 07 08 09 1

Dimenison 2

(0.5944, -0 4472)

(07071, -0.7071)

1
03
03
0.7
06
05
04
0.3
02
01
0
01
02
03
04
05
06
07
08
08
-1

I T Y Y N Y O B ' |

e 'left" eigenvectors & 'right" eigenvectors




Source of the material in this lecture

‘The material in this lecture are taken from the book Machine
Learning in Action by Peter Harrington (Chapter 14)

‘The example on Single Value Decomposition (SVD) is taken
from Dr. Edel Garcia’s notes
https://fenix.tecnico.ulisboa.pt/downloadFile/3779576344458/
singular-value-decomposition-fast-track-tutorial.pdf




