

e B

Introduction

A self-organizing map (SOM) is a visualization technique. It is a
form of neural network where the output is an organized visual
matrix- a two-dimensional grid with rows and columns. The aim
here is to transfer all the input data objects with n attributes (n
dimensions) to the output lattice in such a way that objects next
to each other are closely related. SOM is an unsupervised learning
algorithm. It arranges the datapoints in a lower dimensional
space, helping to visualize high dimensional data through a low-
dimensional space.

The most common SOM output is a 2-dimensional grid with data
objects placed next to each other based on their similarity to one
another. SOMs differs from other clustering techniques because
there is no specific clustering labels assigned to data objects. Data
objects are grouped based on their attribute proximity, with the
task of clustering left to visual analysis by the user.

2D output
K neurons lattice

Input layer

Neuron /

2

e Ty g e e | W = [wir, Wiz, « .. Wim)

Crode: hap Swww oo ow ~fuanchoos | ¥

Condt bape en wib v o e A1 Sl arpamnng map

ﬂl

SOM is used to project data objects from data space,
mostly in n dimensions, to grid space, usually in two-
dimensions. Each datapoint occupies a cell or a node in
the output lattice arranged by constrained depending
on the similarity of the data. Each cell in the SOM grid
(i.e. neuron) corresponds to one or a group of
datapoints. The aim of the SOM is to compare relative
features of the data objects in a simple 2-dimensional
setting where the placement of the objects are related
to one another.

Example of a self-
organizing Map

a5

#r -
P op

|
0
ﬂ%q] % m

Al

£

O
(]
10
1 B2 B3 B4 E5 @ HS mH9 H

How it Works

SOM is a neural network and therefore, the model only
accepts numerical attributes. Also, since it is
unsupervised, there is no target variable. The aim of an
SOM algorithm is to find a set of centroids (neurons) to
represent the cluster but with topological constraints.
The topology refers to an arrangement of centroids in
the output grid. All the data are assigned to centroids.
The centroids closer to each other in the grid are more
closely related. A SOM converts numbers from the
data space to a grid space.

| Step-by-Step Measurement
tep 1: Topology Specification

he first step is to specify the topology of the output. Often a two
nensional rows and columns with a hexagonal or rectangular lattice is
d Hexagonal architecture is preferable since each node can have six
ighbors as compared to rectangular lattice that could only have four

hbors As a result, in hexagonal lattice the association of a data point
vith another data point is more precise.

tep 2: Initialize Centroids

\ 0 starts the process by initializing the centroids. The initial centroids
e values of random data objects from the dataset.

| :s 3: Assignment of Data Objects

er centroids are selected and placed on the grid in the intersection of
ows and columns, data objects are selected one-by-one and assigned to
nearest centroid. The nearest centroid can be calculated using
zlidean distance for numeric data.

Topology: Hexagonal vs. Rectangular

£

Sp 4: Centroid update

T e first step here is to update the closest centroid. The aim is to update
the data values of the nearest centroid of the data object, proportional to
the difference between the centroid and the data object. The value of the
centroids are updated based on the error difference between the

pI edicted and actual values. Through this update, the closest centroid

;'.: Jves closer to the data object in the data space.

he centroid update step is repeated for a number of iterations. Consider
2 t’th iteration of the update where the data point d(t) is picked up. Let
'_ W,,...,W, represent the centroids in the grid space. Letrand c be the

] ', ber of rows and columns respectively. Then k will be equal to r * c.
et w; be the nearest centroid for a data object d(t). During iteration t,
the nearest centroid w; is updated

w; (t) + f; (t) x [d(t) - w; (V)]

t+1) =

-

The effect of the update is the difference between the centroid and the
data point in the data space and the neighborhood function f(t). This
f nction decreases after each iteration.

W then update all the centroids in the grid space neighborhood. The
sighborhood update step is proportional to the distance from the
cI 0sest centroid to the centroid that is being updated. The update
function is stronger when the distance is closer. A Gaussian function is
often used for this:

fi -1 c(Erg)/207)

lhere), is the learning rate function that takes a value between o0 and 1
anc decays for every iteration. This is often a linear rate function or an
inverse of the time function. The variable g; - g; is the distance between
t 2 centroid being updated and the nearest centroid of the data point in
1€ grid space. g; is the radius of the centroid updated. By updating the
e tire neighborhood of centroids in the grid, the SOM self-organizes the
centroid lattice.

Step 5: Termination

The algorithm is continued until no significant centroid
updates take place or the specific number of run
counts is reached. SOM tends to converge towards a

solution in most cases

Point x in the input space maps to points I(x) in the output
'. Each point | in the output space will map to point w(l) in the input space.

From J. A. Bullinaria http://www.cs.bham.ac.uk/~jxb/NN/l16.pdf

e have points x in the input space mapping to points /(x) in the output space:

0 o e Ve
> A

M)
¥
1

Continuous
- ligh Dimensional P N N Y R
Input Space : - M P A

oY N

»
Y

Discrete
Low Dimensional
Output Space

SOM Training

An illustration of the training of a
self-organizing map. The blue blob
is the distribution of the trainin

data, and the small white disc is the
current training datum drawn from
that distribution. At first (left) the / ' > N »@

SOM nodes are arbitrarily
positioned in the data space. The
node (highlighted in yellow) which
is nearest to the training datum is
selected. It is moved towards the
training datum, as (to a lesser
extent) are its neighbors on the
rid. After many iterations the grid

tends to approximate the data
distribution (right).

2D output
K neurons lattice

N

Input layer

iy
o

Neuron i /

.i"n = [-l'ul‘l'u'l- e Trml] i [ll".l-ll".z. ll’.,,,]

Crode: hap www oo o -fuanchoVos | 46

Crndt e e wib guevha oep w A4 Sell arpamnng map

)
b
b
b
)
)
b
.
J
| I
.
)

Example of
SOM

In the example we have 3 input nodes, if
we had 20 the nodes would have 20
characteristics/weights. The SOM
determines which nodes are closest to
each row of data within the dataset
using Euclidean Distance. It uses Best
Matching Unit (BMU) to determine

which node is the closest to the rows
data.

When the SOM has determine what row
the node belongs to, the node updates
the nodes in a radius around it to move Visible
them closer to that node. With each Input
epoch the radius around the nodes Nodes
shrink, meaning less nodes are pulled
towards it making your data more
accurate.

Visible
Output
Nodes

SNE” is a way of converting a high-dimensional data set into a
trix of pair- wise similarities and visualizing the resulting similarity
ta. t-SNE is capable of capturing much of the local structure of the
-dimensional data while also revealing global structure such as |
 presence of clusters at several scales.

Dimensionality reduction methods convert the high-dimensional
data set X = {x,,X,,...,X,} into two or three-dimensional data Y =
JYse-Y.} that can be displayed in a scatter plot.Here, we refer to
the low-dimensional data representation Y as a map, and to the low-
‘ ensional representations y; of individual datapoints as map
points. The aim of dimensionality reduction is to preserve as much
the significant structure of the high-dimensional data as possible
in the low-dimensional map.

£

Stochastic Neighbor Embedding (SNE) converts the high-

dir mensional Euclidean distances between datapoints into

co' nditional probabilities that represent similarities. The
similarity of datapoint X; to datapoint x; is the conditional
probability, p;, that x; would pick x;as its neighbor if neighbors
were picked in proportion to their probability density under a
Gaussian centered at x;. For nearby datapoints, p;;is relatively
h| h, whereas for WIder separated datapoints, p;; will be very
SMa II (for reasonable values of the variance of the Gaussian, o).
M hematlcally, the conditional probability p;;is given by

pii— exp (—|lx; — xj||*/207)
T Sksexp (= llx —xil|2/207)

Rere o is the variance of the Gaussian centered on datapoint x..
acause we are only interested in modeling pairwise similarities, we
’ ’“he value of p;;to zero. For the low-dimensional counterparts y;

; of the high-dimensional datapoints x; and x;, it is possible to

co pute a similar conditional probability, Aibichinve danens by g

Let we set the variance of the Gaussian that was used in the
conditional probability g;; to (1/2) 12, The similarity of the map point Yi
to ap point y: is:

exp (—lyi —y,jlI*)
i €Xp (—|[yi — /%)

9jli =

Again, since we are only modelling pairwise similarities, gjji =0-

ne map points y; and y; correctly model the similarity between the high-
ensional data- points x; and x,, the conditional probabilities p;;and g,
be equal.

E aims to find a low-dimensional data representation that minimizes the
atch between p;;and g;;.

need to minimize the “cost function” defined as the sum of Kullback-

ler divergences over all datapoints

Pjli
C= S KLPI0) = 3 S pilos 2!

:- P. is the conditional probability distribution over all other datapoints
n datapoint x; and Q; is the conditional probability distribution over all |
r map points given map pointy..

Because the Kullback-Leibler dlvergence IS not symmetric,

different types of error in the pairwise distances in the low-

amensmnal map are not weighted equally. In particular, there is a

l 'rge cost for using widely separated map points to represent
iearby datapoints (i.e., for using a small g;; to model large p;;) but

is a small cost for using nearby map points to represent widely

s parated datapoints.

he remammg parameter to be selected is the variance o, of the
Gaussian that is centered over each high-dimensional datapomt X:.
It is not likely that there is a single value of ¢, that is optimal for all
datapoints in the data set because the density of the data is likely
0 vary. In dense regions, a smaller value of g;is usually more
appropriate than in sparser regions. Any particular value of g,
induces a probability distribution, P, over all of the other
datapoints.

3 performs a search for the value of ¢ that produces a o with a fixed
plexity that is specified by the user. The perplexity is defined by

Perp(P;) = DH(P)

| re H(P,) is the Shannon entropy of P,

H(P) = —zpjﬁlogzpju-
J

olexity is defined as a measure of the effective number of neighbors.
> minimization of the cost function is performed using gradient
cent method.

oC
8y; - 22(1’9111' — g+ Pilj— i) Vi — ¥j)-

mization of this cost function allows measurement of these
yabilities.

M = High similarity
. = Low similarity

. Perplexity

N machine learning perplexity is a measurement as how well a
probability distribution predicts a sample. It is used to compare

different probability models. A low perplexity indicates the
probability distribution is good at predicting the sample. The
_rplexity of a discrete probability distribution p is defined as

oH(p) _ 9— 2., p(z)logy p()

Where H(p) is the entropy (in bits) of the distribution and x ranges
over events. The base need not be 2. Perplexing is independent of
the base provided that the entropy and the exponentiation use
the same base. In the case where p models a fair k-sided die, its
perplexity is k. A random variable with perplexity k has the same

uncertainty as a fair k-sided die- k-ways perplexed about the value
of the random variable.

-

j ;distribution Stochastic Neighbor Embedding (t-
" SNE)

There are two serious problems with’SNE (1). Its cost function that
is difficult to optimize; (2). Crowding. To avoid these, t-SNE is
introduced. The cost function used in t-SNE differs from the one
used in SNE in two ways: (a). It uses a symmetric version of SNE
cost function with simpler gradient; (b). It uses a t-student
distribution rather than a Gaussian to compute the similarities
between the two points in low dimensional space. It uses a heavy-
ailed distribution in the low-dimensional space to alleviate both
crowdlng problem and the optimization problems of SNE.

t

Ir the above relation for cost function, the symmetric means pij =
pjiand qij = gji. The gradient of symmetric SNE is expressed as:
4 5C

| —qi) (yi— Y
dy: 2(1’] CIJ)(}’ J’J)

] Crowding problem
"ﬁ nition:

Consider a set of datapoints that lie on a two-dimensional curved
_nifold which is approximately linear on a small scale, and which
IS embedded within a higher-dimensional space. It is possible to
'del the small pairwise distances between datapoints fairly well
ina two-dimensional map. Now suppose that the manifold has ten
intrinsic dimensions and is embedded within a space of much
ligher dimensionality. There are several reasons why the pairwise
distances in a two-dimensional map cannot faithfully model
distances between points on the ten-dimensional manifold. For
iInstance, in ten dimensions, it is possible to have 11 datapoints that
ar e mutually equidistant and there is no way to model this faithfully
in'a two-dimensional map.

-

Source used for this lecture

Laurens van der Maaten and Geoffrey Hinton
“Visualizing Data using t-SNE”

Journal of Machine Learning Research 9 (2008)
2579-2605

