

Introduction

| Sometlmes when minimizing the sum of the squares to find
3 the best fit, we may run into overfitting problem. This is when
~ aset of model parameters give an excellent fit to the data
with small error but when the same model is applied on new
~ data, the prediction is not that accurate. In other words,

: '_ verfitting is defined as follows:

~ Given a hypothesis space H, a hypothesis h € H is said to

~ overfit the training data if there exist some alternative

~ hypothesis h'e H such that h has smaller error than h’ over the
training sample but h’ has a smaller error than h over the

~ entire distribution of data.

I

Generalization in Machine Learning

~ The learning of the target function from training data in Machine
~ Learning is called inductive learning. This refers to learning general
~ concepts from specific examples which is exactly the problem that
~ supervised ML problems aim to solve.

" Generalization refers to how well the concepts learned by a ML

- model apply to specific examples not seen by the model when it
- was learning.

3 " A ML model generalizes well from the training data to any data
- from the problem domain, allowing us to make predictions in the
future on data the model has never seen.

- Overfitting (or underfitting) is how well a ML model learns and
~ generalizes to new data.

i

Overfitting happens when a model learns the detail
and noise in the training data to the extent that it
negatively impacts the performance of the model on
new data. This means that the noise or random
fluctuations in the training data is picked up and
learned as concepts by the model. The problem is that
these concepts do not apply to new data and
negatively impact the models ability to generalize.

Overfitting is more likely with nonparametric and
nonlinear models that have more flexibility when
learning a target function. As such, many
nonparametric machine learning algorithms also
include parameters or techniques to limit and constrain
how much detail the model learns.

Causes of Overfitting and Solutions

i /“ erfitting could be caused by a number of things:

1. if the problem is insufficiently constrained: for example, if we have
~ ten measurements and ten model parameters, then we can often

: obtain a perfect fit.

a2 Fitting noise: overfitting can occur when the model is so powerful
- thatit can fit the data and the random noise in the data.

nere are two important solutions to the overfitting problem: adding
prior knowledge and handling uncertainty. In many cases there is some
prior knowledge we can leverage. A very common assumption is that
the underlying function is likely to be smooth-i.e. having small
‘derivatives. Also, assuming smoothness reduces model complexity as it
' 'aSIer to estimate smooth models from small datasets.

'f' solve overfitting problem we add regularization. This is an extra term
0 the learning objective function that prefers smooth models. For
regressions and for many multi-dimensional functions, this can be done
vith a function of the form:

E(w) = lly — Bwl*> + 4 [lwl|?

Where the first is the data term that measures the model fit to the
raining data. The second term is the smoothness term that penalizes
non-smoothness (rapid change in f(x)). This smoothness is called weight
, cay because it tends to make the weight smaller. Rapid changes in

{ ~ slope of function f (i.e. high curvature) can only be created in
regressions by adding and subtracting basis functions with large
veights. In fact, we may directly penalize smoothness by using a term
hat directly penalizes the integral of the squared curvature of f(x).

o I
.

e can write this as follows:

:)=(y-Bw) (y-Bw) + AwTw=w'B Bw-2w'BTy+Aw w+yly
W' (BTB+AM)w-2w'BTy+yTy

‘minimize E(w), we solve the normal equation

OE
VE(w) = Oora—wi— 0

r all i values. This gives the regularized solution for w

= (BTB+AI)"BTy

.' ‘3

"How to Reduce uncertainties due to overfitting?

Overfitting is a problem because the evaluation of machine learning algorithms
on training data is different from the evaluation we actually care the most
about, namely how well the algorithm performs on unseen data. There are two
echniques that are used to limit overfitting:

. Use aresampling technique to estimate model accuracy.

) " Hold back a validation dataset.

| .- most popular resampling technique is k-fold cross validation. It allows y
training and testing a model k-times on different subsets of training data to
build up an estimate of the performance of a machine learning model on
1Iseen data.

Avalidation dataset is simply a subset of the training data that you hold back
from your machine learning algorithms until the very end of your project. After
you have selected and tuned your machine learning algorithms on your training
dataset you can evaluate the learned models on the validation dataset to get a
al objective idea of how the models might perform on unseen data.

A '-

Sources used for this lecture

Jason Brownlee in understanding machine learning
algorithm

https://machinelearningmastery.com/overfitting-and-
underfitting-with-machine-learning-algorithms/

Definition

3
fLHow do we choose between two possible ways to fit data?

‘Simply measuring how well a model fits data would mean that we always
~try to fit the data as closely as possible. However, fitting the data is no

~ guarantee that we will be able to generalize to new measurements. For
~ example, consider the use of polynomial regression to model a function
~given a set of data points. Higher-order polynomials will always fit the

~ data as well or better than a low-order polynomial; indeed, an N — 1
~degree polynomial will fit N data points exactly (to within numerical
—error). So just fitting the data as well as we can, does not necessarily

- guarantee that it could be generalized to all cases of interest. The
~general solution is to evaluate models by testing them on a new data set
(the “test set”), distinct from the tralnlng set. This measures how

- predictive the model is: i.e. Is it useful in new situations? More generally,
~we often wish to obtain empirical estimates of performance. This can be
~ useful for finding errors in implementation, comparing competing models

~and learning algorithms, and detecting over or under fitting in a learned
- model.

~ Asimple way of doing this is to partition our data into two sets- training set

- and validation set. Let K be the unknown model parameter. We pick a range
- of values for K. Then, for each possible value of K, we learn a model on that K
- on the training set and compute that model’s error on the validation set. The
~error on the validation set could just be

illy; — f(xi)”?'

‘We then pick the K which has the smallest validation set error. The problem
- with this method is that we only get reliable result if our initial training set is
~ large.

The solution to this is N-fold cross validation. In this approach we randomly
partition the training data into N sets of equal size and run the learning
‘algorithm N times. Each time, a different one of the N sets will be the test set
and the model is trained on the remaining N-1 sets. The value of K is the
‘average of the errors across the N test errors. We then pick the value of K that
“has the lowest score and then learn model parameters for this K.

Sources used for this lecture

This section is taken from Aaron Hertzmann and David
Fleet lecture notes in Machine Learning- University of
Toronto

MoG Definition

The Mixture of Gaussians (MoG) model is a generalization of K-
means clustering. While K-means works for clusters that are
more or less spherical, the MoG model can handle other cluster
shapes or even overlapping clusters. This is a probabilistic
measure of the clustering.

1e MoG model consists of K Gaussian distributions, each with
1eir own means and covariances (4, K)). Each Gaussian also has
an associated probability, a, which represents the fraction of the
data that are assigned to dncferent Gaussian components. The
I f- is that each Gaussian component in the mixture should
correspond to a single cluster (Figure 3). The model parameters
[n be written as 6 ={a , «, Uy Ky §-

MoG Formulation

probabilistic model comprise the probabilities of each Gaussian component
Gaussian likelihood over the data space for each component. We can write

p16,L =))=G; u,K;)

ample a single data point from this model, we first randomly select a
ssian component according to their probabilities aj and then we randomly
le from the corresponding Gaussian component. We can write

p(y16) = Zp(v,L = 16)
= p(ylL J,0) P(L=j16)

—_exp[-3 (=) K (7 =)]

Where D is the dimension of the data. This model can
be interpreted as linear combination of Gaussians. We

get a multi modal Gaussians by adding together
unimodal Gaussians.

Figure 3: Shows examples of clustering using MoG method. This classifies
data points in both spherical clusters and those with flat distribution.

Sources used for this lecture

This section is taken from Aaron Hertzmann and David
Fleet lecture notes in Machine Learning- University of
Toronto

‘Receiver Operating Characteristic (ROC) Curve

‘A Receiver Operating Characteristic curve (ROC) is a plot that illustrates the
~diagnostic ability of a binary classifier system as its discrimination threshold is varied.
‘The ROC curve is created by plotting the True Positive rate (TPR) against the False
Positive Rate (FPR) at various threshold settings (Figure 4).

Let us consider a two-class prediction problem (binary classification), in which the
“outcomes are labeled either as positive (p) or negative (n). There are four possible
putcomes from a binary classifier. If the outcome from a prediction is p and the actual
“value is also p, then it is called a true positive (TP); however if the actual value is n then
Jitis said to be a false positive (FP). Conversely, a true negative (TN) has occurred when
- both the prediction outcome and the actual value are n, and false negative (FN) is

~ when the prediction outcome is n while the actual value is p.

o draw a ROC curve, only the true positive rate (TPR) and false positive rate (FPR) are
‘needed (as functions of some classifier parameter). The TPR defines how many correct
-~ positive results occur among all positive samples available during the test. FPR, on the

other hand, defines how many incorrect positive results occur among all negative

| ples available during the test.

A ROC space is defined by FPR and TPR as x and y axes,
respectively, which depicts relative trade-offs between
true positive (benefits) and false positive (costs)-
(Figure 5). Since TPR is equivalent to sensitivity and

FPR is equal to 1 - specificity, the ROC graph is
sometimes called the sensitivity vs (1 - specificity) plot.

‘Two independent probability
distributions are shown in red and
blue. They represent “True Positive
TP)” (red), “True Negative

(TN)” (blue), “False Positive (FP)
(pink)” and “False Negative (FN)
(light blue)”. This provides the
likelihood that a classification is
correct.

Lower panel: Probability of TP vs.
FP (ROC Diagram) showing the
fraction of TP and FP classifications.
The best classification is when
P(TP) = 100%.

P(FP)

Quantitative Measure of Classification Performance

e four cases (TP, TN FP and FN) can be used to define several
terms that are useful in measuring classification performance, as

escribed below:

Sensitivity: is the ability of a classifier to select all the cases that
need to be selected. A perfect classifier will select all the actual
Y’s. It will have no FNs. Sensitivity is defined as the ratio (or
percentage) TP/(TP+FN). However, sensitivity alone is not
sufficient to evaluate a classifier. The TNs are also needed.

pecificity: is the ability of a classifier to reject all the cases that
ed to be rejected. A perfect classifier will reject all the actual
N’s and will not deliver any unexpected results. It will have no
FPs. Specificity is expressed as the ratio TN/(TN+FP).

Relevance: suppose a search is done to identify specific terms
and that returned 100 documents of which 70 were relevant.
Furthermore, the search missed out on a additional 40
documents that could have been useful.

reC|S|on is defined as the proprtion of cases found that were
relevant. From the above case, the number was 70/100 = 70%.
The 70 documents were TP while 30 were FP. Therefore

| ;""ecision is defined as TP/(TP+FP).

R ecall is defined as the proportion of the relevant cases that

A ere found among all the relevant cases. In the above example,
only 70 of the total of 110 (70 found+40 missed) relevant cases
3 vere actually found, giving a recall 70/110 = 63.63%. This is
defined as TP/(TP+FN)

.ccuracy: is defined as the ability of the classifier to select all
jses that need to be selected and reject all cases that need to
e rejected. For a classifier with 100% accuracy, this would imply
1at FN=FP=0. Accuracy is given by (TP+TN)/(TP+FP+TN+FN).

_ror: is the complement of accuracy defined as (1 — Accuracy)

ROC diagram shows
classifications of different

data points. perfect
classification.

TPR or sensitivity

Pefect Classificaton

1
04
FPR or (Y

i

specificity)

Sources used for this lecture

Machine Learning in Action
Peter Harrington
Data Science — Concepts and Practice

Vijay Kotu and Bala Deshpande

Definitions

Looking at hidden relationships in large datasets is
known as Association Analysis. The problem is that
finding different combinations of items can be time
consuming and expensive in terms of computing
time. Apriori Algorithm will solve this problem.

The interesting relationships can take two forms:
frequent item sets or association rules. Frequent
item sets are a collection of items that frequently
occur together. Association rule suggests that a
strong relation exists between two items.

ﬂl
|

Example

.he following table lists a number of transactions:
: '1'3 ansaction# Items

“ soy milk, lettuce

Lettuce, diapers, wine, chard

Soy milk, diapers, wine, orange juice

Lettuce, soy milk, diapers, wine

Lettuce, soy milk, diapers, orange juice

rom this table we can find an association rule such that diaper ->
vine which means that if people buy diaper, it is a good chance that
1ey will buy wine as well. With this information retailers develop a
'00d idea of their customers. They will group special items together.
his will be applicable to other industries such as web-site traffic
1alysis and medicine.

Support and Confidence

"How do we define the “interesting relationships”? What is the definition of
“frequent”? Who defines what is “interesting””?

‘ ere are two concepts that we could use to select these: support and
~confidence.

Support: the support of an item is defined as the percentage of the data set
~that contains these items. From the last example, the support of soy milk is

" 4/5 while the support of [soy milk, diaper] is 3/5 because of out of 5
transactions, 3 contain both soy milk and diapers. In this case we can define a
~minimum support and get only the items that meet that minimum support.

~Confidence: this is defined for an association rule like [diapers] -> [wine]. From
- the above example, the confidence for this rule is defined as support(diapers,
“wine/support(diapers). The support of [diapers, wine] is 3/5. The support of
~diapers is 4/5 so the confidence for diapers = wine is % = 0.75. This means
“that in 75% of the items in our datasetcontaining diapers, our rule is correct

~ (meaning diapers are associated with wine).

A '-

With support and confidence, we can quantify the
success of our association analysis. Now, imagine that
we want to find all sets of items with a support greater
than 0.8. We could generate a list of every combination

of items and then count how frequently that occurs.
However, this process is very slow and expensive in
terms of computing time when applied on large
datasets. Here we use the Apriori Principle.

Apriori Principle

s assume there are four items in a
ore: 0, 1, 2, 3. What are all the
S sible combinations of these items

at could be purchased?

ne diagram shows all possible
mbinations of the items. Our goal is
find sets of items that are purchased
gether frequently. We measure
2quency by the support of a set. The
oport of a set counted the
rcentage of transactions that
ntained that set. For example, to find
pport of a given set {0,3}, we go
‘ough all the combinations and
ntity those containing both o and 3.
 then divide this by the total number \0123)
transactions. This gives our support.
e repeat this for all the sets. In this
se we need to go through this 15
es to count all the combinations.

S Il 2)

=

| —

lis number gets large very quickly. A
ita set that contains N possible items

1 generate 2N — 1 possible item sets. A
ore selling 100 items can have 1.26%103°
mbinations. This will soon become

complicated.

reduce the time needed to compute

s, Apriori Principle is developed. This

Ips us to reduce the number of

teresting items. The Apriori Principle
ites that if an item set is infrequent,]
2N any item set containing that will o1) 02) 03) 12) (13) ‘

o be infrequent. For example, if item 7

XXy

T—;’
t {2,3} is infrequent, from this 012) (o

owledge item sets {0,2,3}, {1,2,3} and
1,2,3} will all be infrequent. Using this,

 can slow down the growth of our ‘ Not
pbonential increase of item sets and Frequent
Iculate the list of frequent item sets.

Improving Classification with AdaBoost Meta-algorithm

Meta-algorithms are a way of combining other algorithms.
We’ll focus on one of the most popular meta-algorithms
called AdaBoost. AdaBoost is considered to be the best-
supervised learning algorithm.

You’ve seen different algorithms for classification. These
algorithms have individual strengths and weaknesses. One
idea that naturally arises is combining multiple classifiers.

Methods that do this are known as ensemble methods or
meta-algorithms. Ensemble methods can take the form of
using different algorithms, using the same algorithm with
different settings, or assigning different parts of the dataset
to different classifiers.

Building classifiers from randomly resampling data

Bootstrap aggregating, which is known as bagging, is a
technique where the data is taken from the original dataset
S times to make S new datasets. The datasets are the same
size as the original. Each dataset is built by randomly
selecting an example from the original with replacement. By
“with replacement” we mean that you can select the same
example more than once. This property allows you to have
values in the new dataset that are repeated, and some
values from the original won’t be present in the new set.

After the S datasets are built, a learning algorithm is applied
to each one individually.

When we like to classify a new piece of data, we apply our S
classifiers to the new piece of data and take a majority vote.

Boosting

Boosting is a technique similar to bagging. In boosting and
bagging, you always use the same type of classifier. But in
boosting, the different classifiers are trained sequentially.
Each new classifier is trained based on the performance of
those already trained. Boosting makes new classifiers focus
on data that was previously misclassified by previous
classifiers.

Boosting is different from bagging because the output is
calculated from a weighted sum of all classifiers. The
weights aren’t equal as in bagging but are based on how
successful the classifier was in the previous iteration. There
are many versions of boosting, the most popular being
Adaptive Boosting- AdaBoost.

Training and Improving the Classifier

An interesting theoretical question is: can we take a weak classifier and
use multiple instances of it to create a strong classifier? By “weak” we
mean the classifier does a better job than randomly guessing but not by
much. That is to say, its error rate is greater than 50% in the two-class
case. The “strong” classifier will have a much lower error rate. The
AdaBoost algorithm was born out of this question (Figure 1).

AdaBoost is short for adaptive boosting. AdaBoost works this way: A
weight is applied to every example in the training data. We’ll call the
weight vector D. Initially, these weights are all equal. A weak classifier is
first trained on the training data. The errors from the weak classifier are
calculated, and the weak classifier is trained a second time with the same
dataset. This second time the weak classifier is trained, the weights of the
training set are adjusted so the examples properly classified the first time
are weighted less and the examples incorrectly classified in the first
iteration are weighted more. To get one answer from all of these weak
classifiers, AdaBoost assigns o value to each of the classifiers. The values
are based on the error of each weak classifier.

The error € is given by

number of incorrectly classified examples
E =
total number of examples

1 £

1-—
a—Eln(.)

After we calculate o, we can update the weight vector D so that the
examples that are correctly classified will decrease in weight and the
misclassified examples will increase in weight. D is given by

e—a
D1 = Dfm if correctly predicted
Die”
t+1 _ i e . ps
D; Sum(D) if incorrectly classified

After D is calculated, AdaBoost starts on the next
iteration. The AdaBoost algorithm repeats the training
and weight-adjusting iterations until the training error
is 0 or until the number of weak classifiers reaches a

user-defined value.

plementation of the full Adaboost algorithm

We built a classifier that could make decisions based on weighted
input values. We now have all we need to implement the ful
AdaBoost algorithm.

Pseudo-code for this will look like this:
For each iteration:

Find the best stump using buildStump()
Add the best stump to the stump array
Calculate alpha

Calculate the new weight vector - D
Update the aggregate class estimate

If the error rate ==0.0 : break out of the for loop

hematic diagram showing combination of results from different classifiers with different

weights (o values) shown in triangles. The combined result is shown as X.

Classifier

Classifier b o

Classifier

Flgure 7.1 Schematic representation of AdaBoost; with the dataset on the left side, the dif-
ferent widths of the bars represent welghts applied to each instance. The welghted predictions
pass through a classifier, which is then weighted by the triangles (o values). The welghted
output of each triangle is summed up In the circle, which produces the final output,

