

Definition

Artificial Neural Network (ANN) provides an approach to approximate
real valued, discrete valued and vector valued target functions. It is
very effective in learning to recognize hand written characters,
spoken words or faces. The ANN has been inspired by the workings
of our neural system. This is a densely interconnected set of units
vhere each unit takes a number of real-valued inputs (possibly the
output of other units) and produces a single real-valued output

("‘ hich may become the input to many others).

O put our neural connections in prospect, the human brain is
stimated to have a densely interconnected network of 10" neurons
ach connected to an average of 10* other neurons. Neuron activity
S often excited or inhibited through connections to other neurons.
'he neuron switching time is of the order of 10-® seconds. The fast
esponse time for the biological systems implies a highly parallel
)rocessing of the input data.

"D @

Artificial Neural Networks

A supervised learner models the relationship between input and output
variables. The neural network technique approaches this problem by
developing a functional relation between input and output variables by

u« sembling the architecture of a neuron. Here follows a simple mathematical
‘ormulation. Consider the linear model

= 1+ 2X1+ 3X2 + 4X3

‘ here Y is the output and X1, X2 and X3 are input attributes. The intercept is 1
nd 2, 3 and 4 are the coefﬁuents for the input attributes X1, X2 and X3
__-spectlvely The simple relation is shown in Figure 1. In this topology, X1is the
iput value and passes through a node, shown by a circle. The value of X1 is
‘multiplied by its weight, which is 2 as noted in the connector. Similarly all the
attributes go through a node and a scaling transformation. The last node has
f O input — it is the intercept. The values of all the connectors go to the output
node that predicts Y. The topology in Figure 1 shows an Artificial Neural
‘Network (ANN). The neural networks could also model more complex

nonlinear relations and learn through adaptive adjustments of weights of
p des

Terminology

l"f neural net terminology, nodes are called units. The first [ayer of nodes
closest to the input is called the input layer or input nodes. The last layer
Of nodes is called the output layer or output nodes. The transfer

unction scales the output to desired range. The output layer performs
aggregation function. This simple two layer topology (Figure 1) with

e input and one output is called a perceptron. It is the most simplistic
orm of an ANN. A perceptron is a feed-forward neural net where the

input moves in one direction and there are no loops in the topology.

NN is used to model nonlinear relations between input and output
variables. This is made possible by the presence of more than one layer
In the topology, apart from the input and output layers, called hidden
layers. A hidden layer contains a layer of nodes that connects inputs
from previous layers and applies an activation function. The output is
calculated by a more complex combination of input values.

F;ure 2 shows a more complex topology with hidden layers. It has
fur input variables as characteristics of an iris- Sepal length, Sepal
/idth, Petal length and Petal width. An ANN based on iris

s ucture has three-layer structure with three output nodes, one
f)r each class variable. This predicts spices for the iris with the
ANN providing output for each class type. A winning class type is
se TIected based on the maximum value of the output class label.

iransfer functions commonly used are: sigmoid, normal bell curve,
I'istic, hyperbolic or linear functions. The purpose of sigmoid and
pell curve is that they provide linear transformation for a particular
range of values and a nonlinear transformation for the rest of the
alues. Because of the presence of multiple hidden layers, one can
cl sely approximate any mathematical continuous relationship

Detween input and output variables.

o i

Figure 1: Shows the architecture of a neural Network

Figure 2: Shows hidden layers in an ANN

Types of ANN

'here are three types of ANN models available: A simple
perceptron with one input and one output layer, a flexible ANN

r.o del called neural net with all the parameters for complete
model building and an advanced AutoMLP (Automatic Multi-layer
Perceptron) that combines concepts from genetic and stochastic
algorithms. It leverages an ensemble group of ANNs with different
arameters like hidden layers and learning rates. It also optimizes
by replacing the worst performing model with better ones to

‘maintain an optimal solution.

How ANN Works
hrough a technique called back propagation. For a given network topology and
vation function, the key training task is to find weights of the links. The
del uses every training record to estimate the error between the predicted
‘actual output. Then the model uses the errors to adjust the weights to
limize the error for the next training record and this step is repeated until the

rror falls within the acceptable range. The rate of correction from one step to
yther should be managed carefully so that the model does not overcorrect.

steps in developing an ANN from a training dataset include:

Step 1: Determine the
topology and Activation
Function: For the above
example the dataset has
three numeric input attributes

(X1, X2, X3) and one numeric
output (Y). To model the
relationship, a topology with
two layers and a simple
aggregation activation
function is being used. There
is no transfer function here.

Step 2: Initiation: Assume the
initial weights for the four
links are 1, 2, 3 and 4. Take an
example model and a training
record with all the inputs as 1

and the known output as 15.
Therefore X1=X2=X3=1 and
output Y=15.

Step 3: Calculating errors:

The predicted output of the record
can be calculated. This is a feed-
forward process when the input data
passes through the nodes and the
output is calculated. The predicted
output Y’ according to the current
model is

1+(1x2)+(1x3)+(1x4)=10

The difference between the actual
output from the training record and
the predicted output is the model
error:

e=Y-Y

The error for this example is 15 — 10 =5

Step 4: Weight Adjustment

[his is an important part of the learning process within the ANN. The
arror estimated is passed back from the output node to all other nodes
in the reverse direction. The weights of the links are adjusted from their
old value by a fraction of the error. The fraction A applied to the error s
called the learning rate and takes values from o to 1. A value close to 1

| asults in a drastic change to the model for each training record and a
zalue close to o results in smaller changes and less correction. The new
veight of the link (w) is the sum of the old weight (w’) and the product
the learning rate and proportion of the error (A x e)

o
.

W=w +Axe

The choice of the A is important. Some models start with A close to 1 and

réduce the value of A while training each cycle. By this approach any
utlier record later in the training cycle will not degrade the relevance of

C e mOdel

The current weight of the first link is w2 = 2. Assume the learning
rate is A = 0.5. the new weight will be w2=2+0.5 x 5/3 = 2.83. the
error is divided by 3 because the error is back propagated to three
links from the output node. Similarly, the weight will be adjusted
for all the links.

In the next cycle a new error will be computed for the next
training record. This cycle goes on until all the training records are
processed by iterative runs. The same training example can be
repeated until the error rate is less than a threshold.

In reality, there are more complex ANN structures with many
idden layers and multiple output links (one for each nominal class

Ve ue) Because of the numeric calculations, an ANN works best

h numeric inputs and outputs.

-

Perceptron

Jne type of ANN system is based on a unit called perceptron. A perceptron

Kes a vector of real-valued inputs, calculates a linear combination of all these
inputs and then outputs a 1if the result is greater than some threshold and -1
dtherwise (Figure 3). Given inputs x, through x_, the output o(x,,... x,) computed
Dy perceptron is

yeeesX,) =1 IfY =W, +W, X, + W, X, + ... + W, X, >0
-1 otherwise

1ere w, is a real valued constant or weight that determines the contribution of
nput x; to the perceptron output. The quantity —w, is the threshold that the

W ghted combination of the inputs should surpass in order for the perceptron

t0 output a 1. To simplify notation, we consider an additional constant input x,
owing us to write the above relation as

Zi=oWi X; > 0

%

in vector form as w.x>0 (Figure 3).

11}
{ 1if X wy x>0
= =0 |

-1 otherwise

e could sometimes write the perceptron function as

0 (‘2)‘-= sgn (_W. x)

here sgn =1if y > 0 and -1 otherwise.

.' can view perceptron as representing a hyperplane decision
rface in the n-dimensional space of points (instances). The
rceptron outputs a 1 for instances lying on one side of the
yperplane. The equation for this hyperplane is

w.x =0.

, % ¢

*The Perceptron Training Rule
'ANN we often learn networks of many interconnected units. Let us
derstand how to learn from a single perceptron. The learning problem
ere is to find a weight vector that causes the perceptron to produce the

correct +/- 1 output for each of the given training examples. Here we
nsider two learning problems — the perceptron rule and data rule.

iy

e begin with random weights and iteratively apply the perceptron to each
t ining example, modifying the perceptron weights whenever it misclassifies
example This process is repeated, iterating through the training

:ﬁ’ amples as many times as needed until the perceptron classifies all
training examples correctly. Weights are modified at each step according to
the perceptron training rule, which revises the weight w; according to the rule

A ';_ere Aw,=n(t-0) X

"_ 'e t is the target output for the current training example, o is the output

generated by the perceptron, and n is a positive constant called the learning
rate. The role of the learning rate is to moderate the degree to which

veights are changed at each step. It is usually set to some small value (eg
0.1) and is sometimes made to decay as the number of weight-tuning
iterations increases. When the training example is correctly classified, by
the perceptron, the value of (t-0) is equal to zero, making Aw, = 0 so that no
veights are updated.

| 'pose the perceptron outputs -1, when the target output is +1. To make the
rceptron output a +1 instead of -1, the weight must be altered to increase the
alue of w.x. For example, if x,=0.8, n=0.1, t=1and o= -1— Aw=n (t - 0)x, =

0. (1- (-1)) 0.8 =0.16. This learning procedure converges within a limited number
applications of the perceptron training rule.

)

fMuItiIayer Networks and Backpropagation

A single perceptron can only express linear decision surfaces.
N contrast a kind of multilayer networks learned by the
ackpropagahon algorithm are able of expressing a variety of
nonlinear decision surfaces. Here the speech recognition
|st|ngmsh|ng among 10 possible vowels (“hid”, “had”, *head”,
‘hood”) all in the context of task involves (Figure 4). As shown
f‘.n Figure 4, it is possible for the multilayer network to
represent highly non-linear decision surfaces that are much
more expressive than the linear decision surfaces of single
units shown earlier. To learn multilayer networks we use a

gradient descent algorithm (Figure 6).

head hid who’d hood

Figure 4: An ANN designed for speech recognition

(From Machine Learning by Tom. M. Mitchell).

FIGURE 4.5

Decision regions of a multilayer feedforward network. The network shown here was trained to
recognize 1 of 10 vowel sounds occurring in the context “h_d” (e.g., “had,” “hid”). The network
input consists of two parameters, F1 and F2, obtained from a spectral analysis of tl'1e sound. The
10 network outputs correspond to the 10 possible vowel sounds, The network prediction is the
output whose value is highest. The plot on the right illustrates the highly nonlinear decision surface
represented by the learned network. Points shown on the plot are test examples distinct from the
examples used to train the network. (Reprinted by permission from Haung and Lippx;mnn (1988).)

Ihe unit we can use as the basis for constructing multilayer
1ietworks is a unit whose output is a nonlinear function of its

ir puts. One solution here is the sigmoid unit- a unit much like a
perceptron, but based on a smoothed, differentiable threshold
function (Figure 5). Like perceptron, the sigmoid function first
lculates a linear combination of its inputs then applies a
threshold to the result. In the case of the sigmoid unit, the
lhreshold output is a continuous function of its input. More
orecisely, the sigmoid unit computes its output o as

o= o (W.x)
where

1
G(y)=1+e‘3’

'i the sigmoid function or alternatively the logistic function.

A -

‘fe sigmoid function has the useful property that its derivative
easily expressed in terms of its output. This will be useful in
e gradient descent learning rule when we need to take the
rivative of the function (Figure 5).

ire 5: The sigmoid threshold unit for ANN (Figure from Machine Learning by Tom M. Mitchell).

— L3

0 = O(net) = e

1+e

FIGURE 4.6
The sigmoid threshold unit.

The Backpropagation Algorithm

‘This learns the weights for a multilayer network, given a
“network with a fixed set of units and interconnections. It
~employs gradient descent to minimize the squared error
‘between the network output values and the target values for
‘these outputs.

| ince we are considering networks with multiple output units
rather than single units as before, we first define E to sum the
‘errors over all of the network output units

E(w)—= % 7 y (tka — Oka)*

d k€outputs

where outputs are the set of output units in the network and t,
and o, , are the target and output values associated with the k-
th output unit and training example, d.
The learning problem for backpropagation is to search a large
‘ypothesis space defined by all possible weight values for all
he units in the network (Table 1). The situation can be
|suaI|zed in terms of an error surface similar to linear units
‘} "igure 6). Gradient descent is used to find a hypothesis to
minimize E. The error surface in the case of multilayer
networks can contain multiple minima. The global descent in
this case will converge to a number of minima instead of a
single minima.

Figure 6:The gradient descent technique finds the minima of the

SRS
R
\\ “““\“

FIGURE 44

Error of different hypotheses. For a linear unit with two weights, the hypothesis space H is the

wo, wy plane. The vertical axis indicates the error of the corresponding weight vector hypothesis,
relative to a fixed set of training examp

S aining examples. The arrow shows the negated gradient at one partic-
:lllar; point, indicating the direction in the wo, w; plane producing steepest descent along the error
ace.

tructure of a code for backpropagation in ANN (From Machine Learning by Tom M. Mitchell)

BACKPROPAGATION(training .examples, 1, Min ., Mour . Mhidden)

Each training example is a pair of the form (%,), where X is the vector of network inpy
values, and 1 is the vector of target network output values.

n is the learning rate (e.g., .05). niy is the number of network inputs, nhidden the number of
units in the hidden layer, and noy; the number of output units.
The input from unit i into unit j is denoted x;;, and the weight from unit i to unit j is denoted
Wy
¢ Create a feed-forward network with n;, inputs, nxdges hidden units, and n.,, output units,
o Initialize all network weights to small random numbers (e.g., between —.05 and .05).
o Until the termination condition is met, Do
o For each (3,7) in training examples, Do

Propagate the input forward through the network:

1. Input the instance ¥ to the network and compute the output o, of every unit u in
the network, - v "

Propagate the errors backward through the network:
2. For each network output unit k, calculate its error term 4;

8+ on(l = ox) (1 — o)
3. For each hidden unit &, calculate its error term &,

& < or(l ~ o) Z wiady
k&outpurs
4. Update each network weight wy

Wi+ wy + Awy
where

Awy =p R

Summary

-

Data preparation: The input data should be numeric attributes. The ANN model
v l‘I not work with categorical or nominal data types. The output is the number
Of classes the input data will be assigned to.

\ odeling operator and parameters: The training dataset is connected to the
NN operator which accepts real data types and normalizes the values. These

e I3

parameters are available in ANN for users to change and customize:
“’ ,9'

Hidden layer: Determines the number of layers, size of each hidden layer

8

~ and names of each layer for easy identification in the output. The default
size of the node is -1 calculated as [(# of attributes+ # of classes) [2] +1

Training cycle: this is the number of times a training cycle is repeated. In a
- NN, every time a training record is considered, the previous weights are
- quite different. Therefore, it is needed to repeat the cycle many times.

Learning Rate: this is the rate with which the error between the inout and
- output reduces.

Convolutional Neural Nets (CNN)

‘Convolutional Neural Nets (CNN) are made up of neurons that
have learnable weights and biases. Each neuron receives
'some inputs, performs a dot product and optionally follows it
Wwith a non-linearity. The network has a single differentiable
'score function: from the raw image pixels on one end to class
‘scores at the other. It also has a loss function on the last (fully-
‘connected) layer.

The difference between the conventional and convolutional
‘neural nets: ConvNet architectures make the explicit
‘assumption that the inputs are images, which allows us to
“encode certain properties into the architecture. These then
‘make the forward function more efficient to implement and
vastly reduce the amount of parameters in the network.

CNN Architecture

D volumes of neurons. Convolutional Neural Networks take
advantage of the fact that the input consists of images and they
constrain the architecture in a more sensible way. In particular,

Li‘ like a regular Neural Network, the layers of a ConvNet have

eurons arranged in 3 dimensions: width, height, depth. (the word
de pth here refers to the third dimension of an activation volume,
10t to the depth of a full Neural Network, which can refer to the
t)tal number of layers in a network.)- (Flgure 7a). For example, the
input images have an input volume of activations, and the volume
1as dimensions 32x32x3 (width, height, depth respectively). The
eurons in a layer will only be connected to a small region of the
layer before it, instead of all of the neurons in a fully-connected
nanner. Moreover, the final output layer would have dimensions
1 1X10, because by the end of the ConvNet architecture we will
duce the full image into a single vector of class scores, arranged
3 ng the depth dimension (Figure 7b)

Figure 7a: Shows details of the archtecture

Lo

Wo

*@ synapse
axon from a neuron e

WoTo
dendrite
aendrite \
cell body

Zwizi +b
i

w11

output axon

activation
function

Left: An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example volume of neurons in the first
Convolutional layer. Each neuron in the convolutional layer is connected only to a local region in the input volume spatially, but
to the full depth (i.e. all color channels). Note, there are multiple neurons (5 in this example) along the depth, all looking at the
same region in the input - see discussion of depth columns in text below. Right: The neurons from the Neural Network chapter
remain unchanged: They still compute a dot product of their weights with the input followed by a non-linearity, but their

connectivity is now restricted to be local spatially.

Fig 7b: Architecture of an CNN

depth

=9

<95

Y

height

Q0000
. output layer OOOOO i ﬁ

width

¥
S
o O ‘

O
g

)

input layer
hidden layer 1 hidden layer 2

Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width, height, depth), as
visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron
activations. In this example, the red input layer holds the image, so its width and height would be the dimensions of the image,
and the depth would be 3 (Red, Green, Blue channels).

Layers for a CNN

imple ConvNet is a sequence of layers, and every layer of a ConvNet
insforms one volume of activations to another through a differentiable
nction. We use three main types of layers to build ConvNet
Chitectures: Convolutional Layer, Pooling Layer, and Fully-Connected
yer (exactly as seen in regular Neural Networks). We will stack these
rers to form a full ConvNet architecture.

A;imple ConvNet classification could have the architecture [INPUT - CONV -
R LU - POOL — FC] as briefly described below:

IN PUT [32x32x3] will hold the raw pixel values of the image, in this case an
ir age of width 32, height 32, and with three color channels R,G,B.

& INV layer will compute the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights and a
Sr all region they are connected to in the input volume. This may result in

v Jlume such as [32x32x12] if we decided to use 12 filters.

ELU layer will apply an elementwise activation function, such as the max (0,x)

t iresholding at zero. This leaves the size of the volume unchanged
(2x32x12])

‘_ JOL layer will perform a down sampling operation along the spatial
‘} ensions (width, height), resulting in volume such as [16x16x12].

=C (i.e. fully-connected) layer will compute the class scores, resulting in volume

of size [1x1x10], where each of the 10 numbers correspond to a class score. As
th ordinary Neural Networks and as the name implies, each neuron in this

I yer will be connected to all the numbers in the previous volume.

C" VNets transform the original image layer by layer from the

orig ginal pixel values to the final class scores. Note that some
layers contain parameters and other don’t. In particular, the
CONV/FC layers perform transformations that are a function of no
only the activations in the input volume, but also of the parameters
(the weights and biases of the neurons). On the other hand, the
RELU/POOL layers will implement a fixed function. The
parameters in the CONV/FC layers will be trained with gradient
descent so that the class scores that the ConvNet computes are
co..S|stent with the labels in the training set for each image.

Summary

A ConvNet architecture is in the simplest case a list of
Layers that transform the image volume into an output
volume (e.g. holding the class scores)

There are a few distinct types of Layers (e.g. CONV/
FC/RELU/POOL are by far the most popular)

Each Layer accepts an input 3D volume and
transforms it to an output 3D volume through a
differentiable function

Each Layer may or may not have parameters (e.g.
CONV/FC do, RELU/POOL don't)

Each Layer may or may not have additional

hyperparameters (e.g. CONV/FC/POOL do, RELU
doesn’t)

Gradient Descent in ANN

radient descent for every weight wl ij and every bias bl I in
the neural network is

Nhere J(w,b) are cost functions. Each step in the NN depends
N the slope of the cost vs. error term with respect to the
veight. Therefore the gradient of this is measured and
lotted, with the weight corresponding to the minimum on
he cost vs. error plot selected (Figure 8).

Figure 8: Shows the change in error as a function of the weight

w

Figure 8. Simple, one-dimensional gradient descent

Figure 9: Cost function vs. error

Figure 9. Two-dimensional gradient descent

Sources used for this study

1. Machine Learning

by Tom M. Mitchell (Chapter 4)

2. http://cs231n.github.io/convolutional-networks/

CS231in Convolutional Neural Networks for Visual
Recognition

