

Introduction

A deep neural network (DNN) is an Artificial Neural Network (ANN)
with multiple layers between the input and output layers. The DNN
f nds the correct mathematical manipulation to turn the input into the
output, whether it be a linear relationship or a non-linear relationship.
Ihe network moves through the layers calculating the probability of
each output. For example, a DNN that is trained to recognize dog
reeds will go over the given image and calculate the probability that
the dog in the image is a certain breed. The user can review the results
'_nd select which probabilities the network should display (above a
certain threshold, etc.) and return the proposed label.

‘Each mathematical manipulation as such is considered a layer, and
complex DNN have many layers, hence the name "deep" networks.

DNNs can model complex non-linear relationships. DNN architectures
generate compositional models where the object is expressed as a
layered composition of primitives. The extra layers enable composition
of features from lower layers, potentially modeling complex data with
fewer units than a similarly performing shallow network.

DNNSs are typically feedforward networks in which data flows from the
input layer to the output layer without looping back. At first, the DNN
creates a map of virtual neurons and assigns random numerical values, or
"weights", to connections between them. The weights and inputs are
multiplied and return an output between o and 1. If the network didn’t
accurately recognize a particular pattern, an algorithm would adjust the
weights. That way the algorithm can make certain parameters more
influential, until it determines the correct mathematical manipulation to
fully process the data.

Re'lerrent Neural Network (RNNSs), in which data can flow in any direction,

Convolutional deep neural networks (CNNs) are used in computer vision.
CNNs also have been applied to for automatic speech

recognition (ASR). In ANN adjacent network layers are fully connected to
one another (Figure 1). That is, every neuron in the network is connected
to every neuron in adjacent layers:

are 1: Neurons are connected to one another via a complex networks

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer

,, Bias

Lets take a simple example of one input and one output. The
input is x..w,. what does changing w, do in the network? This is as
in Figures 2a and 2b. Changing weight changes the slope of the
‘output of the sigmoid activation function. This is useful if we
“want to study the strength of the relation between the input and
‘output functions (Fig 3a). What if we only want the output to
ange when x is greater than 1. This is where the bias comes in.
‘Now consider the same network with also a bias input.

-y changing the bias, one can change where the function
1 ','ctivates. Without introducing a bias term, the activation
“function will not shift along (Fig 3b). This is useful when
‘introducing an “if statement”

5

Fig 2a: Input-Output Fig 2b: Input +bias
node node (w,x,+b,)

X1 4’0—' hw(x)

P,
N

Fig 3a: Weight (w)
changes

Fig 3b: Bias changes

Cost Function

s described in the previous lecture, one would minimize the error
nveen the expected and the actual outputs and find the weights
esponding to the minimum error. This could be generalized by
sducing cost function. The cost function for a single training pair

J(w,b,z,y) = - || y*=h™ (27|

|| y ypred()||2

re h(x) is the output. This is the cost function for the zt" training
ple. The vertical lines are sum of the squares of errors. The % is
he ease of taking derivative of the cost function.

‘The formulation for the cost function is for a single pair of nodes
(x,y). We want to define the cost function over all the m training
‘nodes. The mean square error is:

1 <1
J ,b T - z_h(nl) 2\ 112
w8) = -3 5)]

1 S J(W,b,2,)
m z=0

The source function is used in gradient descent and backpropagation
to estimate the weight and the bias.

Convolution

nvolutlon is a simple mathematical operation between two matrices.
Consider a 6x6 matrix A and a 3x3 matrix B. Convolution between A and B is
c! noted by (A * B) and results in a new matrix C whose elements are obtained
Dy sum of the produces of elements between matrix of A and B.

‘ne convolution is shown visually in Figure 4. Matrix B is the lighter shaded one
vhich slides over the darker matrix A from left-top to right-bottom. At each
overlapping position, the corresponding elements of A and B are multiplied
:th all the products added to obtain the corresponding elements of C. The
esulting matrix C will be smaller in dimension than matrix A and larger than
natrix B.

Vhat is the property of the convolution operation? Matrix A is typically a raw
image where each cell in the matrix is a pixel value and matrix B is called a filter
(or kernel) which when convolved with the raw image, results in a new image
that highlights only certain features of the raw image. All the three images are
vixel maps. In this case the filter will work to change the shape of the initial
pixel image (Figures 4a and 4b).

CC nvolutlons are useful in order to identify and detect basic features in images
such as edges. The challenge is to find the right filter for a given image. ML can
g used to find optimal filter values.

b L

D‘termining the filter was a matter of finding the 3x3=9 values of
natrix B in the above example. Matrix A has n(width) x n(height)
p els for a greyscale image. Standard color images have three
channels: red, green, blue. Color images are easily handled by a 3D
natrix n(width) x n(height) x n(channels) which are convolved
vith as many different filters as there are color channels.

Aatrix C is smaller than the raw image A. If the dimensions of A and
B are known, one could estimate dimension of C. Lets assume that
(width)=n(height)=n. If the filter is also a square matrix of size f,
then the output Cis square of dimension n - f + 1. In the above case
n=6, f=3 and therefore C has dimension 4 x 4 (Figure 4a).

. i«

Figure 4b: Shows the effect of filter colors (depth)

s D D b
i 2 N o W
Rt |

W o
W O W 9D
® :

.

£

Max Pooling

As we discussed, the convolution of two is calculated by the sum-
product of the elements of the two matrices- the raw and filter
matrix. However, instead of performing a sum-product, if one
simply used the highest pixel value in the overlapping cells at each
computed location, a process called max pooling would be
obtained (Fig 5). Max pooling has the property that identifies the

I y;,ost dominant feature in an image. This is another feature
detection tactic widely used in image processing. Similar to max
pooling, an average pooling could also be to the raw image where
the values are averages in the overlapping cells, instead of doing a

sum-product.

Fig 5: Max Pooling

S"" metimes the elements of matrix C are passed through a RELU
non-linearity. This forms one convolutional layer. The output of

t IS convolutional layer is sent to the next layer which can of

a other convolutional layer (with a different filter)or flattened

a d sent to a regular layer of nodes- Fully Connected.

{ uppose A[0] is the raw image and C is the result of its

onvolution with filter B. A[1] is the result of adding a bias term to
each element of C and passing them through a ReLU activation
function. B is analogous to a weight matrix b. Convolution could
herefore be used as a part of a deep learning network. In an NN
packpropagation can be used to compute the elements of the
weight matrix b with a similar process used to find the elements
of a filter matrix B.

ReLU stands for rectified linear unit, and is a type of activation

-

function. Mathematically, it is defined as y = max(o, x).

Viultiple filters can be applied to the same layer. Let B1 be a
1orizontal edge detector and B2 a vertical edge detector. Both
Alters could be applied to A[0]. The output C can be represented
as a volume with dimension 4x4x2 — stacking two 4x4 matrices,
each the result of the convolution between A and B.

T determine the filter function, backpropagation needs to be
1sed. Therefore, a cost function needs to be constructed and
nimized/maximized using gradient descent.

Convolutional Neaural Network- A Review

v'or each pixel in the input image, we encoded the pixel's
Intensity as the value for a corresponding neuron in the input
layer. For the 28x28 pixel images we have been using, this means
our network has 28x28 = 784 input neurons (Figure 2). We then
trained the network's weights and biases so that the network's
output would correctly identify the input images.

;3 owever, using networks with fully-connected layers to classify
images have problems. The reason is that such a network
architecture does not take into account the spatial structure of
the images. For instance, it treats input pixels which are far apart
and close together on exactly the same footing. Such concepts of
‘Spatial structure must instead be inferred from the training data.
But what if, instead of starting with a network architecture, we
‘used an architecture which tries to take advantage of the spatial
‘structure? This brings us to the convolutional neural networks.

Cnvolutional neural networks use three basic ideas: local
receptive fields, shared weights, and pooling. Let's look at each of
these ideas in turn.

Local receptive fields: In the fully-connected layers shown earlier,
the inputs were depicted as a vertical line of neurons. In a
convolutional net, it'll help to think instead of the inputs as a
28x28 pixel intensities we are using as inputs. We connect the
i,ut pixels to a layer of hidden neurons. But we won't connect
avery input pixel to every hidden neuron. Instead, we only make
‘onnections in small, localized regions of the input image. For
example, each neuron in the first hidden layer will be connected to
a small region of the input neurons- a sample of 5x5 region
orresponding to 25 pixels (Figure 6a, b). For a particular hidden
neuron, we might have connections that look like this:

Figure 6a: The network treats the image
for spatial features. A sample of 5 x5
pixels are selected across the image to
allow identification of the spatial features.

input neurons

OOOOOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOO 0000000000000
OOOOOOOOOOOOOOOOOOOOOOOOOOOO

0000000000000 000000

000000000
0000000000
000000000
000000000
000000000
000000000 0000000000
000000

00000000

O
o
O
O
o

O
00000000000
00000000000

Figure 6b: Shows local respective field
shifted to the first pixel

input neurons

00000 hidden neuron
33 Q.

O
000

o

Building the Hidden Layers

' That region in the input image is called the local receptive field for
~ the hidden neuron. It's a little window on the input pixels. Each
~ connection learns a weight. And the hidden neuron learns an
~ overall bias as well. You can think of that particular hidden neuron
Was learning to analyze its particular local receptive field. We then
~ slide the local receptive field across the entire input image (Figure
~ 6¢, d). For each local receptive field, there is a different hidden

~ neuron in the first hidden layer.

: Then we slide the local receptive field over by one pixel to the

~ right (i.e., by one neuron), to connect to a second hidden neuron
~ And so on, building up the first hidden layer. If we have a 28x28
~input image and 5x5 local representative field, then there will be
 24x24 nureons in the hidden layer (Figure 6d).

Figure 6¢: Shows local respective Figure 6d: The local respective
field shifted to the first pixel. field is shifted by one pixel.

input neurons input neurons

}‘o first hidden layer O }

first hidden layer

,;Hared weights and biases: Each hidden neuron has a bias and 5x5
weights connected to its local receptive field. We use the same weights
and bias for each of the 24x24 hidden neurons. For example for J-th and

k-th hidden nureon the output is:

G(b+ Z OZm OWlma]+lk+m)

Where o is the neural activation function (eg. sigmoid function). b is the
shared value for the bias. w, ., is a 5x5 array of shared weights. We use
d,, to denote the input activation at position x,y. This means that all the
neurons in the first hidden layer detect exactly the same feature just at
different locations in the input image. A property of convolutional

"'. etworks is that they are well adapted to the translation invariance of
i ages (Figure 7).

3 'o this reason, we sometimes call the map from the input layer to the
dden layer a feature map. We call the weights defining the feature

' 1ap the shared weights.

-

The network structure described so far can detect just
a single kind of localized feature. To do image
recognition we'll need more than one feature map.
And so a complete convolutional layer consists of

several different feature maps (Figure 7).

In Figure 7 we show three different feature maps each
defined by a set of 5x5 shared weights. The result is
that the network can detect 3x3 different kinds of
features, with each feature being detectable across
the entire image.

Figure 7: shows three different hidden layers

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

o

Putting it all together: We can now put all these ideas
together to form a complete convolutional neural
network (Figures 8 and 9). It's similar to the
architecture we were just looking at, but has the
addition of a layer of 10x10 output neurons.

The network begins with 28x28 input neurons, which
are used to encode the pixel intensities. This is then
followed by a convolutional layer using a 5x5 local
receptive field and 3x3 feature maps. The result is a
layer of 3x24x24 hidden feature neurons (Figure 8).

Figure 8: Shows input and output from a complex network

3 x12x 12

l
OOOOﬂQOOOO

Figure 9: Neural net with different hidden layers

¢ Figure 12:

A Classic CNN Arcitecture

lassic CNN arcitecture could consist of several convolutional
ers interspersed with max pool layers and followed by fully
Inected layers where the last convolution matrix is flattened to
constituent elements and passed through a few hidden layers
‘ore terminating at the output layer (Figure 10).

Figure 10: Example of a classical Neural Net

CNN and Deep Learning

CNN are strong deep learning networks because of the
following reasons:

The feature detection layers (such as Conv1, Conv2,
etc) are computationally fast because there are a few
parameters to train (eg. each Conv1 filter is 5x5 which
yields 25 + 1 (for matrix elements and bias) times 6
filters. This results in 156 parameters. Also, not every
parameter in a layer is connected to all the parameters
in the next layer as happens in fully connected layers-
FC1and FC2 have 576 x 120 = 69,120 parameters to
train. Because of their efficiency and flexibility, CNN is a
common deep learning technique.

—
—. . .

Dense Layers, Drop out Layers

; ense or fully connected layer is one where all the nodes in the
prior layer are connected to all the nodes in the next layer (Figure

A dropout layer helps to prevent model overfitting by dropping the
nodes randomly in the layer. The probability of dropping a node is
introlled by a factor ranging between o0 and 1. A drop out factor
)ser to 1 drops more nodes from the layer. This is similar to

R ularization that reduces the complexity of the model.

Figure 11: Example of a desns neural net

Input
layer

- -
.
l..c

7

e
.\
LS
\\

L.

Recurrent Neural Network

A art from CNN, another widely used technique in deep learning is
Recurrent Neural Network (RNN). This is used where data has a
ter poral component. Examples are time series, sensor data or
language dependent data. The idea behind RNN is to train a
1etwork by passing the training data through it in a sequence
'ere each example is an ordered sequence. In the example in Fig
12, X <> are the inputs where <t> indicates the position in the

: guence. There are as many sequences as there are samples. y <
are the predictions which are made for each position based on the
tr ining data. The training will determine the set of weights of this
atwork, b, which is a linear combination with x, <*>and passed

t ough a non-linear activation produces an activation matrix a <

, > E g (bx X <t>)

’z

-

RNN also uses the value of the activation from the previous
time step (or previous word in a sentence since a word
depends on its previous word). Therefore the value of
activation matrix can be modified by adding the previous
steps activation multiplied by another coefficient, b,

ok t- t
a<>-g(baa< 1>+bxx<>)

Finally the prediction for position <t> is given by

y<t>:g(bya<t>)

Where b, is another set of coefficients. All the coefficients
are found through the learning process using
backpropagation (Figure 12).

ata Science Concepts and Practice (second edition)

,} Kotu and Bala Deshpande
Neural Networks and Deep Learning” Chapter 6

%://neuralnetworksanddeeplearning.com/chap6.html

F"ichael Nielsen

