


Definitions

inear Algebra provides techniques and notations to express a
et of equations in a compact form and operate on them.
onsider the following two equations with two variables:

X, — 5%, = 13

X, +3X,= 9

his can be written in matrix form as
F [4 -5, [~13
E" A‘[_z 3 ]’b_[ 9 ]

\Vhere A and b are matrixes of the form

here are many advantages in expressing equations in this form.




Notations

By x € R™*™ we denote a matrix with m rows and n columns, where the entries of
A are real numbers.

By A € R" we denote a vector with n entries. By convention, an n dimensional
vector is often thought as a matrix with n rows and 1 column. This is known as
column vector. A row vector (a matrix with n rows and one columns) is produced as
xT (transpose of matrix x- we will see later what this means).

The ith element of a vector x is denoted by x;

We use the notation aj; to identify the matrix element in ith row and jth column,|




ai; a2

21 A22
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Am1 Am2

We denote jth column of A by g;

5l — ap a9

We denote ith row of A by a;T
T — J i
a1

i 4




Matrix Algebra

Matrix Multiplication

The product of two matrices A € R"™*™ and B € R™*? is
C=AB € R™*P

Where C;; = Y1, Ay By

In order for matrix product to exist the number of columns in A must be equal to the
number of rows in B.

Vector-Vector product

Given two vectors x,y € R", the quantity x"y is called inner product or dot product
of the vectors is a real number|




The product of two matrices A € R™*™ and B € R"*? is the matrix

C = AB € R™P,

Cij = Z A B
k=1

~ Note that in order for the matrix product to exist, the number of columns in A must equal
the number of rows in B| There are many ways of looking at matrix multiplication, and
we'll start by examining a few special cases.




Vector-Vector Product

Given two vectors x,y € R", the quantity 27y, sometimes called the inner product or dot
product of the vectors, is a real number given by

n

gyeR=[x1 2o -+ Zp ] y:2 :inyi.
: i

Yn

Observe that inner products are really just special case of matrix multiplication. Note that
it is always the case that 27y = yT .

Given vectors z € R™, y € R™ (not necessarily of the same size), xy? € R™*" is called
the outer product of the vectors. It is a matrix whose entries are given by (xy?);; = 2:;,




Vector and Matrix
Multiplication

Y1

Yo a
. =— E LilYi-
. i=1

Yn

Inner products are a special case of matrix multiplication. Note that it is always the
case that xTy = yTx

Given vectors x € R™ andy € R" (not necessarily of the same size), xyT € R™*" is
called the outer product of the vectors. It is a matrix whose elements are given by

")y = X1y




Matrix-Vector Product

Matrix-Vector Product

Given a matrix A € R™ ™ and a vector x € R", their productis a vectory = Ax €
R™. If A is in the row form, we have

=l |zZi4+]| @ | Zot+:::4F 1| @G5 | Za

n

Here y is a linear combination of the columns of A, with the coefficients given by the
entries of x.




Matrix-Matrix Product

Matrix-Matrix Product

We can view Matrix-Matrix multiplication as a set of vector-vector products C=AB.
In this case the (i,j)th entry of C is equal to the inner product of the ith row of A and
the jth row of B, like the following:
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Rules about Matrix Multiplication
* Matrix multiplication is associative - A(BC) = (AB)C

* Matrix multiplication is distributive - A(B+C) = AB + AC
* Matrix multiplication is not, in general, commutative - AB# BA




Basic Properties

Properties of Matrices
In the following some basic definitions properties of matrices are summarized.
The identity matrix or Diagonal matrix

The identity matrix is denoted by I € R™" is a square matrix with ones on the
diagonal and zeros elsewhere

lij = 1 for i=j

lii=0 fori#j

This has the property that for all A € R™*"
Al=A=1IA

A diagonal matrix is a matrix with all the non-diagonal elements zero.
This is denoted by
D=diag{d1, d2,...dn}

Dij= d; fori=j
Di=0fori#j




Matrix Transpose

The Transpose

The transpose of a matrix is when changing the columns and rows. Given a matrix

A € R™" its transpose is written as A7 € R™ ™, In other words
(AT); = Aji

The transpose of a column vector is a row vector. Some properties of transpose
matrix include
. (AT)T=A
e (AB)T=BTAT
o (A+B)T=AT+BT
Symmetric Matrices

A square matrix is symmetric if A = AT. It is anti-symmetric if A = - AT.

Based on this definition, any square matrix can be written as the sum of a
symmetric matrix and an anti-symmeltric matrix.

1 1
A:E(A+AT)+ E (A— AT




Matrix Trace

The Trace

The trace of a square matrix is the sum of all the diagonal elements of that matrix

n
i=1

Some properties of trace matrix include:

ForA € R™™ TrA=Tr AT

ForA,B € RV Tr (A+B)=TrA+TrB

ForA e R"™™andt e RTrtA=tTrA

For A and B such that AB is square, Tr AB = Tr BA




Linearly Independent

A set of vectors x = (xy, X2,...,Xn), is linearly independent if no vector can be
represented as a linear combination of the rest of the vectors. Similarly, if one vector
belonging to the set can be represented as a linear combination of the remaining
vectors, the vectors are said to be linearly dependent. For example, in the following
case, the vectors are said to be linearly dependent

n-1

Xn = E a; Xi

i=1




Rank of a Matrix

The rank of a matrix A corresponds to the maximal number of linearly independent
columns of A. Rank is thus a measure of the non-degenerativeness of the system of
linear equations and linear transformations encoded by A.

Example: The following matrix has rank 2. The first two rows are linearly
independent, sp the rank is at least 2, but all three rows are linearly dependent
(subtracting the second row from the first row gives the third row. Therefore, the
rank is less than 3.

. 0 1
-2~
3 3 0

The column rank of a matrix is the size of the largest subset of columns of A that
constitute a linearly independent set. The row rank is the largest number of rows of
A that constitute a linearly independent set.

For A € R™ ™, rank (A) < min(m, n). If rank (A) = min(m, n), then A is said to be
full rank.




Norms of a Matrix

Norms

The norm of a vector is a measure of its length. In n-dimensional Euclidian space the
length of a vector x = (x3, x2,...,Xn), or the norm, is estimated as

1X|p=vxF + x5+ + x2

This gives the distance from the origin to the point X, a consequence of Pythagorean
theorem. The norm has always be a positive number.




Inverse of a Matrix

The Inverse
The inverse of a square matrix A € R™ " is denoted A and is a unique matrix such
that

ATA=1

Where [ is a unitary matrix. Non-square matrices do not have an inverse.




Orthogonal Matrices

Orthogonal Matrices

Two vectors x,y € R" are orthogonal if X"y =0.
A square matrix U € R™" is orthogonal if all its columns are orthogonal to each

other. A vector x is normalized if |x| =1




Determinants

Determinant

The determinant of a square matrix is a value that can be computed from the
elements of the matrix. Geometrically, it can be viewed as the scaling factor of the
linear transformation described by the matrix. A determinant is denoted as det(A)
or |A|. A square matrix has a determinant as follows

Al =

@ b)zad—bc.

Similarly, a 3x3 square matrix has a determinant

8
g 9 g h

a

Al = - ef_b‘df d e

h 1

aet + bfg+ cdh — ceg — bdi — afh.




Geometrically, we could show a 2 dimensional determinant as a parallelogram
(Figure 1). The value of the determinant corresponds to the area of the
parallelogram

(a+c, b+ d)

(0,0)

Figure 1: shows the geometric meaning of the determinant of a square matrix




Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Given a square matrix A € R™ ", A € Cis an eigenvalue of Aand x € C"is
the corresponding eigenvector if
Ax = Ax x+0

This means that multiplying A by a vector X, results in a new vector that has
the same direction as x but scales by a factor A. The matrix A is a square
matrix and x is a column vector. The mapping is a result of matrix
multiplication in the left and scaling of the column vector in the right hand
side of the equation. Geometrically an eigenvector, corresponding to a real
nonzero eigenvalue, points in a direction that is stretched by the
transformation and the eigenvalue is the factor by which it is stretched. If the
eigenvalue is negative, the direction is reversed.




In Figure 2, the length of vector x is increased by multiple of A. Therefore x is
the eigenvector with A as its eigenvalue.

Yl
Ay

ol

O X Ax X

Fig 2. Vector x is stretched by a scalar value A under transformation by matrix A.
The direction of the vector does not change. Vector x is an eigenfunction with
eigenvalue A.




Applications of Eigenvector and Eigenvalue

.onsider the following matrix equation:

2 3 @=(Dand (2 3)x@=4x()

the example on the left, the resulting vector is not an integer
Itlphcatlon of the original vector whereas in the example in the right,
itis exactly 4 times the original vector. The vector here is a vector in 2-
dimensional space. The vector 32 represents an arrow from the origin
0) to the point (3,2) on the (X,Y) plane. The square matrix is a
nsformatlon matrix. By multiplying this on the left of a vector, the
sult is another vector that is transformed from its original position.
Eigenvectors arise from such transitions.

’ transformation matrix that is multiplied by a vector, reflects vectors
the line Y = X. If there is a vector that lies on the line Y=X, that (and all
multiples of it) would be eigenvectors of that transformation matrix.



roperties of Eigenvectors

| ~igenvectors can only be found for square matrices and not every square
matrix has eigenvector. For an n x n matrix, there are n eigenvectors.
Therefore a 3 x 3 matrix has 3 eigenvectors. Also, all the eigenvectors of a
matrix are perpendicular- at right angle to each other. This means that one
could express the data in terms of these orthogonal eigenvectors instead of
axpressing them in terms of X and Y axes. For matrices with size larger than 3 x
3, finding eigenvectors becomes complicated.

’roperties of Eigenvalues

igenvalues are associated with eigenvectors. In the above example, “4” is the
2igenvalue of the square matrix on the left. No matter what multiple of the

sigenvector we took before multiplying it with the square matrix, we would
lways get 4 times the scaled vector as our result.




How to determine Eigenvalues and Eigenvectors

For a square matrix 4 ¢ R»xn is an eigenvalue of A and x is the
corresponding eigenvector It L

{ = /x xz0
This means that multiplying A by the vector x results in a new vector

" hat points in the same direction as x, but scaled by a factor A. Also, for
any eigenvector x, and scalar t,

A(cx) = c(AX) = ¢ (AX)= A (cx). Therefore, cx is also an eigenvector.
‘Because of this, we assume that eigenvector is normalized to have
‘length 1. The above equation can be written in the form that (I,x) are

" eigenvalue and eigenvector of A: (Al —=A)x=0 x #o.

- kMl — A)x = 0 has a non-zero solution to x only if (M — A) has a non-
‘empty null space. This is only the case if (Al — A) is singular (its
~determinant being zero): (M - A)| = 0

1 singular matrix does not have a matrix inverse. A matrix is singular
nly if its determinant is zero).

B O




We expand this determinant into a polynomial in A where A
‘will have maximum degree n. We then find the n roots of A
‘to find n eigenvalues- A, A\, A,...An. To find eigenvectors
corresponding to eigenvalues |, we solve the linear




Some Rules

The trace of A is equal to the sum of its eigenvalues

n
trA = Z A
i=1
-'he determinant of A is equal to the product of its eigenvalues

Al =T] A
= |

e rank of A is equal to the number of non-zero eigenvalues of A

The eigenvalues of a diagonal matrix D = diag(d,,...,d,) are just the diagonal
ntriesd, ..., d,
ﬂ the eigenvectors of A are linearly independent, then the matrix X will be
nvertible: A = X A X'. A matrix that can be written in this form is
liagnalizable.




A Review of Matrix Calculus

Matrix calculus is a way to perform multivariate operations. It collects various
partial derivatives of a single function with respect to many variables or of a
multivariate function with respect to single variables.

The Gradients

If f is a function that takes matrix A of size mxn and returns a real value, the gradient
of f with respect to A is the matrix

Of(A) 9f(A)
0A11 0A12
of(A) 9f(A)

Vaf(4) eR™M = | ¥ e

of(A) 9f(A)
6-’4m1 814m2




This can be written as

(Vaf(A))y = 5

{ Now, if A is a vector the gradient is,

of (z)
or1
of(x)
8:1,'2

9f (z)
OTn

- The gradient of a function is defined only if the function is real-valued (if it returns a
. scalar).




From the definition of gradients it follows that:

Ve(f () + g(x) = Vi f(x) + Vyg(x)
and

Vx(t f(x)) = tV.f(x) wheret €R




The Hessian Matrix

The Hessian Matrix

Suppose fis a function that operates on a vector R™ and returns a scalar. Then the
Hessian matrix is defined as an n x n matrix of partial derivatives of f, with respect
tox

FPfx) Pf(x) 1)

6:@ Ox10x2 g 0x10xy
O5el i) 0% f(x)
dxr20x1 8:1:% s 0xr20xn

821;(33) 821;(56) 32];(1‘)

Orndxr1  Oxndxa ar2

This is expressed as

(V2f(2))y = LD




Further Reading

Most of the material in this course is taken from Zico Kolter and Chuong Du
Lecture notes on Linear Algebra — September 2015.

Any introductory book in linear algebra contains tha material covered in this
lecture.




