
week3

April 22, 2019

1 The Foundation of Applied Machine Learning

1.1 Spring 2019

1.1.1 Instructor: Prof. Bahram Mobasher

1.1.2 Teaching Assistance: Abtin Shahidi email abtin.shahidi–at–email.ucr.edu

1.1.3 Course webpage: https://abtinshahidi.github.io/teaching/

2019-spring-foundation-machine-learning

2 Week 3

2.1 Continuing on Statistics and python:

2.1.1 In the following exercise we are going to make some assumption about data, make a

model, and fit the parameters of the model:

3 Flip A Coin: Is this Coin Really Fair?

3.1 Imagine that you want to measure the fairness of a given coin:

3.1.1 You run the following experiment:

1. You count number of heads per N = 20 coin toss.
2. You do the previous line 100 times.

And this is the outcome of the experiment:

In [1]: data_array = [6, 7, 8, 11, 8, 7, 8, 9, 8, 5, 12, 7, 5, 8, 8, 8, 10,

9, 9, 7, 5, 11, 6, 2, 9, 8, 11, 8, 10, 5, 9, 11, 8, 9,

7, 8, 6, 8, 12, 9, 11, 9, 6, 7, 11, 5, 9, 6, 8, 12, 6,

8, 7, 8, 8, 11, 5, 6, 6, 7, 12, 9, 7, 8, 9, 7, 11, 7,

9, 4, 8, 9, 9, 9, 12, 6, 8, 7, 10, 6, 5, 8, 9, 7, 8,

7, 9, 7, 7, 12, 9, 11, 6, 5, 9, 7, 9, 7, 11, 8]

First we need to come up with a model for the data. We need to find the probability of each
outcome first, before getting into the estimation for fairness. Let’s ask a simple questions: What

are the possible outcomes of a coin toss?

The answer is: (Head, tail) or (0,1) or (True, False) or (win, lose)

1

So, if we assume that the probability of getting 1 is p and p is not going to change throughout
the experiment. Also, by definition the probability of getting 0 is q = 1− p. (p is a quantity we are
looking for, since it is a measure for the fairness of the coin)

Let’s say that we are going to toss the coins N times and we get n desired outcome. (e.g. Head

is the desired outcome)
But, what are the chances of getting n out of N coin tosses?
n desired outcome probability is pn; also we have N − n undesired outcome during the exper-

iment which means that the total probability of getting n 1s and N − n 0s is pnqN−n

Also, we do not care about the order of the coin toss. (e.g. (1,0,0,0,1), (0,1,1,0,0), (1,1, 0, 0, 0)
all are considered same outcome) So, we need to multiply the previous probability by number of
configurations. (Number of ways you can choose n ones, and N − n zeros; which is: (N

n)
So the probability of the n heads out of N coin toss, when the probability of single head is p, is

the following:

p(n|N, p) =

(

N

n

)

pn(1 − p)N−n (1)

Which is called the binomial distribution.
There is a pre-defined binomial function in scipy package. However, since we are still trying

to get familiar with python, let’s write the function ourself as below:

In [2]: # importing packages

import numpy as np

import matplotlib.pyplot as plt

use LaTeX fonts in the plot

plt.rc('text', usetex=True)

plt.rc('font', family='serif')

In [3]: def binomial(n=0, N=1, p=1):

"""

This is the probability mass function for the binomial distribution.

INPUT:

n: Number of desired outcome

N: Number of trials

p: Probability of a desired outcome for each separate coin toss

OUTPUT:

Probability of getting n desired outcome, out of N trials,

when the probality of desired outcome is p

"""

from math import factorial

factor = factorial(N)/(factorial(n)*factorial(N-n))

return factor*(p**n)*(1-p)**(N-n)

2

3.1.2 Now we need to make some assumption about prior distribution of p which is the quan-

tity of the interest.

Since we have no other information about the coin before-hand we can assume a Uniform prior
for p. So, let’s sample from 105 values for p from this uniform distribution.

In [4]: number_of_points = 10**5

prior_p = np.linspace(0,1, number_of_points)

Importing time() for getting a benchmark for different methods:

In [5]: from time import time

3.1.3 A simple for loop:

In the following cell, we are going to calculate the probability of getting all the values in the
data-set, while using different p. Since, we can assume that the experiments are independent,
we can simply multiply all the probabilities. Then looking for the p value which maximize that
probability; or in other words, is the most likely value for p given our data-set.

You should notice that we are using the Bayes’ law again; we are looking for P(p|X) in which
X is the whole data-set. But, we can turn that around and look for much simpler quantity, using
Bayes’ law: P(p|X) ∼ P(X|p)

In [6]: N = 20

prob_p_cat=np.zeros(number_of_points)

ti=time()

for i,p in enumerate(prior_p):

prob=1

for data in data_array:

prob *= binomial(data, N, p)

prob_p_cat[i] = prob

tf=time()-ti

print("For loop method for {} data points and {} simulations (sampling p) takes: {:10.3f}

For loop method for 100 data points and 100000 simulations (sampling p) takes: 24.183 seconds

This is the most likely value according to the description above.

In [7]: prior_p[prob_p_cat==max(prob_p_cat)]

Out[7]: array([0.40300403])

3

3.1.4 Using numpy.vectorize:

In this method instead of using a for loop on the elements of the data set we can use the
numpy.vectorize(binomial), which allows us to give the vectorized function the whole array of
data.

In [8]: vec_binomial = np.vectorize(binomial)

In [9]: N = 20

prob_p_cat=np.zeros(number_of_points)

ti=time()

for i,p in enumerate(prior_p):

prob_p_cat[i] = np.prod(vec_binomial(data_array, N, p))

tf=time()-ti

print("numpy.vectorize method for {} data points and {} simulations (sampling p) takes:

numpy.vectorize method for 100 data points and 100000 simulations (sampling p) takes: 19.482

In [10]: prior_p[prob_p_cat==max(prob_p_cat)]

Out[10]: array([0.40300403])

You can see that the numpy.vectorize method is a little bit faster than the simple for loop.

In [11]: fig_p = plt.figure(figsize=(8,8))

Just normalizing the probability to maximum value so most likely

value corresponds to 1.

For getting the through probability we need to find the Integral

of the un-normalized distribution.

plt.plot(prior_p, prob_p_cat/max(prob_p_cat), markersize=1)

plt.title(r"\textbf{Probability distribution of fairness measure(p)}", fontsize=20)

plt.xlabel(r"Coin fairness: p", fontsize=18)

plt.ylabel(r"Aribitrary Normalized Probability", fontsize=18)

plt.show()

4

from matplotlib.patches import Rectangle

_number_of_points_=10**6

x = np.linspace(0,1, _number_of_points_)

y = np.sqrt(1-x**2)

Plot the circle

plt.fill_between(x,y)

There are more sophisticated ways to do this as well!

Making the square

y1 = np.ones(10**6)

y2 = np.zeros(10**6)

make the square plot

plt.plot(x, y1, "k")

plt.plot(x, y2, "k")

plt.plot(y2, x, "k")

plt.plot(y1, x, "k")

plt.title(r"\textbf{$\frac{\pi}{4}=S$, in which S: is the blue area}", fontsize=22)

plt.xlabel(r"x position", fontsize=18)

plt.ylabel(r"y position", fontsize=18)

plt.show()

6

4.1.2 First let’s start with making N random (x, y) points from [0, 1] range:

In [13]: N = 10e4

N = int(N)

x = np.random.random(N)

y = np.random.random(N)

Now we calculate the distance of each point from (0, 0): distance function –> d((x,y), (0,0))

In [14]: distance_from_0_0 = np.sqrt(x**2 + y**2)

Let’s count number of points with d((x, y), (0, 0)) ≤ 1

In [15]: circle_points = distance_from_0_0[distance_from_0_0<=1]

Now we have an array of distances for points inside the circle (d((x, y), (0, 0)) ≤ 1):
If we define n to be the number of points within circle, and N to be total number of points, We

can find the area to be:

S =
n

N

In [16]: PI = 4 * len(circle_points)/len(distance_from_0_0)

print(PI)

3.14204

As you can see we are getting close to the True value.
Let’s put the above procedures inside a function:

In [17]: def our_PI_generator(N=10e5):

"""This is our generic code for approximating pi ~ 3.14 with Monte Carlo simulation"""

import numpy as np

initializing

N = int(N)

Produce random numbers between [0,1] for (x,y)

x = np.random.random(N)

y = np.random.random(N)

Find the distance of (x,y) from [0,0]

distance_from_0_0 = np.sqrt(x**2 + y**2)

imposing the condition for the circle: distance((x,y),(0,0))<= 0

circle_points = distance_from_0_0[distance_from_0_0<=1]

return 4 * len(circle_points)/N

In [18]: our_PI_generator(10e7)

8

Out[18]: 3.1411142

Let’s use different number of points to see how adding to the number of points changes our
numerical estimate for π:

In [19]: np.logspace(2, 6, 10)

Out[19]: array([1.00000000e+02, 2.78255940e+02, 7.74263683e+02, 2.15443469e+03,

5.99484250e+03, 1.66810054e+04, 4.64158883e+04, 1.29154967e+05,

3.59381366e+05, 1.00000000e+06])

In [20]: I = np.logspace(2, 6, 5000)

I = np.array([int(i) for i in I])

x = [our_PI_generator(i) for i in I]

Here we assume the true value of π is coming from numpy.pi. Let’s find the errors of our
estimates:

In [21]: distance_from_pi = np.array(_x_)-np.pi

This is how our estimate errors change with different number of points.

In [22]: fig2 = plt.figure(figsize=(8,8))

plt.plot(np.log10(I), distance_from_pi)

plt.title(r"\textbf{Deviation from π (\texttt{numpy.pi})}", fontsize=22)

plt.xlabel(r"\log{N} in which $N: $ is number of points", fontsize=18)

plt.ylabel(r"$\pi_{mc}-\pi_{numpy}$", fontsize=18)

plt.show()

9

except TypeError:

lenght_of_array = 1

selector=np.zeros(lenght_of_array)

for i in range(lenght_of_array):

if distances[i]<=radius:

selector[i] = 1

return selector

Now let’s divide our points into two dictionaries: inside_points and outside_points

In [25]: selector = impose_circle(distance_from_0_0)

inside_points, outside_points = {}, {}

inside_points["x"] = x[selector==1]

inside_points["y"] = y[selector==1]

outside_points["x"] = x[selector==0]

outside_points["y"] = y[selector==0]

In [26]: fig = plt.figure(figsize=(8,8))

plt.plot(inside_points["x"], inside_points["y"], '.', markersize=2,

label=r"$(x,y) | \sqrt{x^2+y^2} \leq 1 $")

plt.plot(outside_points["x"], outside_points["y"], '.', markersize=2, label=r"$(x,y) |

plt.title(r"\textbf{Monte Carlo simulation}", fontsize=22)

plt.xlabel(r"x position", fontsize=18)

plt.ylabel(r"y position", fontsize=18)

plt.legend(bbox_to_anchor=(1, 0.75), fontsize=18, markerscale=10)

plt.show()

12

In [28]: N = 10e4

N = int(N)

Points from (0,0)

x = np.random.random(N)

y = np.random.random(N)

dis=np.sqrt(x**2+y**2)

Points frome (1,1)

x_1= np.ones(N)-x

y_1= np.ones(N)-y

dis1=np.sqrt(x_1**2+y_1**2)

Now that we have our points let’s apply the criteria:

In [29]: selector=impose_circle(dis)

selector1=impose_circle(dis1)

In [30]: final_sel = selector1*selector

In [31]: _inside_points, _outside_points = {}, {}

_inside_points["x"] = x[final_sel==1]

_inside_points["y"] = y[final_sel==1]

_outside_points["x"] = x[final_sel==0]

_outside_points["y"] = y[final_sel==0]

In [32]: fig = plt.figure(figsize=(8,8))

plt.plot(_inside_points["x"], _inside_points["y"], '.', markersize=2, label=r"$(x,y) |

plt.plot(_outside_points["x"], _outside_points["y"], '.', markersize=2, label=r"$(x,y)

plt.title(r"\textbf{Monte Carlo simulation}", fontsize=22)

plt.xlabel(r"x position", fontsize=18)

plt.ylabel(r"y position", fontsize=18)

plt.legend(loc='upper center', bbox_to_anchor=(1.5, 0.75), fontsize=18, markerscale=10)

plt.show()

15

Out[34]: 0.5707963267948966

Using the formula directly:

In [35]: np.pi/2-1

Out[35]: 0.5707963267948966

4.1.7 And as you would expect all of these methods are giving us consistent results.

5 Random Walk: As a simple example of modeling a random process

5.1 We are going to make a random walk and try to answer basic questions like what
is the expected distance from the staring point, path, . . .

There are few ways of appraoching this problem: 1. Functional approach: Building the whole
process as a pipeline of differnet functions, which is the approach we used so far. 2. Object

oriented approach: Which is concepetually a very differnet approach but by doing this excersise
we’ll learn why this approach can be very useful for some problems.

Tip: Desiding what appraoch to take for a particular problem, depends on many factors. One
of the easiest factor which is mainly independent of the problem is that whether you are going to
reuse your codes again or adding differnet features to it later. If that’s the case, generally speaking
it is better to try to think about the problem and implement your code with the object oriented
approach.

5.1.1 Like always let’s start with the simplest case: 1-d random walk

In [36]: def random_walk_1d(n, step=1):

"""This is a function for making a 1-d random walk

INPUT:

n (int): number of steps to take

step (float): lenght of each steps

OUTPUT:

positions (numpy.array): an array of different positions during

the random walk

"""

import random

import numpy as np

making an array for putting all the information

positions=np.zeros(n)

initial position

x = positions[0]

for i in range(1,n):

choosing the random step to take

dx = random.choice([1,-1])*step

17

