
Out[34]: 0.5707963267948966

Using the formula directly:

In [35]: np.pi/2-1

Out[35]: 0.5707963267948966

4.1.7 And as you would expect all of these methods are giving us consistent results.

5 Random Walk: As a simple example of modeling a random process

5.1 We are going to make a random walk and try to answer basic questions like what
is the expected distance from the staring point, path, . . .

There are few ways of appraoching this problem: 1. Functional approach: Building the whole
process as a pipeline of differnet functions, which is the approach we used so far. 2. Object

oriented approach: Which is concepetually a very differnet approach but by doing this excersise
we’ll learn why this approach can be very useful for some problems.

Tip: Desiding what appraoch to take for a particular problem, depends on many factors. One
of the easiest factor which is mainly independent of the problem is that whether you are going to
reuse your codes again or adding differnet features to it later. If that’s the case, generally speaking
it is better to try to think about the problem and implement your code with the object oriented
approach.

5.1.1 Like always let’s start with the simplest case: 1-d random walk

In [36]: def random_walk_1d(n, step=1):

"""This is a function for making a 1-d random walk

INPUT:

n (int): number of steps to take

step (float): lenght of each steps

OUTPUT:

positions (numpy.array): an array of different positions during

the random walk

"""

import random

import numpy as np

making an array for putting all the information

positions=np.zeros(n)

initial position

x = positions[0]

for i in range(1,n):

choosing the random step to take

dx = random.choice([1,-1])*step

17

x+=dx

positions[i]=x

return positions

5.1.2 Let’s use our code above for finding a min(max) of a given function:

In [37]: def f(x):

return x**2+2*x

We can find the minimum:
d f (x)

dx = 2x + 2
Which has the solution of x = −1

In [38]: def min_finder(_f, xi=0, step=0.01, n=100):

import random

import numpy as np

positions=np.zeros(n)

x = xi

for i in range(1,n):

stay = 1

while stay==1:

dx = random.choice([1,-1])*step

x_dummy=x+dx

if _f(x_dummy)<=_f(x):

positions[i]=x_dummy

x = x_dummy

stay = 0

return positions

We got the same results with our greedy random walk algorithm:

In [39]: min_finder(f, n=100)[-1]

Out[39]: -0.9900000000000007

5.1.3 Now let’s go to 2-d case: 2-d random walk

In [40]: def random_walk_2d(n):

"""2-d random walk function

INPUT:

n (int): number of steps to take

OUTPUT:

positions_dic (dic): A dictionary which contains am array of x and y values and

the keys are "x" and "y"

"""

x,y = 0, 0

import random

18

positions_dic={}

positions_dic["x"]=np.zeros(n)

positions_dic["y"]=np.zeros(n)

for i in range(1, n):

(dx, dy) = random.choice([(0,1), (0,-1), (1,0), (-1,0)])

x,y=x+dx,y+dy

positions_dic["x"][i]=x

positions_dic["y"][i]=y

return positions_dic

In [41]: N = 10000

positions_walker_0=random_walk_2d(N)

positions_walker_1=random_walk_2d(N)

In [42]: fig_2d_rw = plt.figure(figsize=(8,8))

plt.plot(positions_walker_0["x"], positions_walker_0["y"], label="Walker 0")

plt.plot(positions_walker_1["x"], positions_walker_1["y"], label="Walker 1")

plt.title(r"\textbf{Random walk in 2-dimension}", fontsize=22)

plt.xlabel(r"x position", fontsize=18)

plt.ylabel(r"y position", fontsize=18)

plt.legend(fontsize=18, markerscale=10)

plt.show()

19

The
√

N in which N is number of steps is very close to the most likely value. Something to
check and think about later.

Here we are writing a function to simulate N simulations with n steps:

In [48]: def Simulate_walks(number_of_steps, number_of_simulations):

simulation={}

for i in range(number_of_simulations):

simulation[i]=random_walk_2d(number_of_steps)

return simulation

5.1.4 Now let’s make a random walker which can move along differnt angles.

In [54]: def random_walk_2d_degree_free(n):

x,y = 0, 0

degree=0

import random

import numpy as np

positions_dic={}

positions_dic["x"]=np.zeros(n)

positions_dic["y"]=np.zeros(n)

for i in range(1, n):

Choose a degree in radian between [0, 2*pi] with 100000 choices for angles

degree = random.choice(np.linspace(0, 2*np.pi, 100000))

(dx, dy) = (np.cos(degree), np.sin(degree))

x,y=x+dx,y+dy

positions_dic["x"][i]=x

positions_dic["y"][i]=y

return positions_dic

In [67]: positions_walker_deg_0 = random_walk_2d_degree_free(1000)

positions_walker_deg_1 = random_walk_2d_degree_free(1000)

In [102]: fig_2d__deg_rw = plt.figure(figsize=(8,8))

plt.plot(positions_walker_deg_0["x"], positions_walker_deg_0["y"], label="Walker 0")

plt.plot(positions_walker_deg_1["x"], positions_walker_deg_1["y"], label="Walker 1")

plt.title(r"\textbf{Random walk in 2-dimension}", fontsize=22)

plt.xlabel(r"x position", fontsize=18)

plt.ylabel(r"y position", fontsize=18)

plt.legend(fontsize=18, markerscale=10)

22

assigning the initial position

self.x = x

self.y = y

def move(self,dx,dy):

"""dx,dy are float type: function to make a new position object at the new coordinates

return position(self.x+dx, self.y+dy)

def findX(self):

"""Give the x coordinate of the object"""

return self.x

def findY(self):

"""Give the y coordinate of the object"""

return self.y

def distance(self, other):

"""other is an object from position class: function will calculate their relative

delta_x = self.x - other.findX()

delta_y = self.y - other.findY()

return (delta_x**2+delta_y**2)**0.5

def __str__(self):

return "({},{})".format(self.x, self.y)

Here I just defined two points (a, b) and I will use the distance method:

In [105]: a = position(1,2)

b = position(4,5)

In [106]: b.distance(a)

Out[106]: 4.242640687119285

In [107]: a.distance(b)

Out[107]: 4.242640687119285

Great! It seems to work fine!

6.0.2 This is the base class and it’s not something useful by itself and it will be inherited.

In [108]: # we are going to pass this class to another classes below

class walker(object):

def __init__(self, name= None):

"""assume name is a string"""

self.name = name

24

def __str__(self):

if self.name != None:

return self.name

return "Unkown"

6.0.3 Here we are going to make two types of walker:

1. Normal walker: which has no preference for any directions.
2. Biased walker: which has some bias toward a particular direction. (in our case in y direction)

In [109]: import random

class Normal_walker(walker):

def take_step(self):

"""Taking a random choice out of all the possible moves"""

choices_of_steps = [(0,1), (1,0), (0,-1), (-1,0)]

return random.choices(choices_of_steps)[0]

class Biased_walker(walker):

"""Taking a random choice out of all the possible moves"""

def take_step(self):

choices_of_steps = [(0,1.5), (1,0), (0,-0.5), (-1,0)]

return random.choices(choices_of_steps)[0]

Notice that we have the same name for take_step methods under different sub-classes of
walker which is different when the class is different.

6.0.4 Now we need to define a class for the space that we need to put the walkers in:

In [110]: class Space(object):

def __init__(self):

self.walkers={}

def addWalker(self, walker, pos):

"""Takes a walker and position class and will add it to our dictionary of walkers,

if walker in self.walkers:

raise ValueError("Walker already exist")

else:

self.walkers[walker]=pos

def getPos(self, walker):

"""Will take a walker class and give back the position class assigned to it"""

if walker not in self.walkers:

raise ValueError("No such Walker exist in our space!")

return self.walkers[walker]

def moveWalker(self, walker):

25

"""Take a walker class and dependent on what subclass was chosen in defining the

if walker not in self.walkers:

raise ValueError("No such Walker exist in our space!")

Delta_x, Delta_y = walker.take_step()

moving the walker to new position (class)

self.walkers[walker] = self.walkers[walker].move(Delta_x, Delta_y)

Now that we built up our position, walker, and Space we can make a random walk:

In [112]: def walk(space, walker, number_of_steps, log_pos=False):

""" function for performing a random walk for a given walker

INPUT:

space is from Space cls

walker is from Walker cls

number_of_steps is integer>=0

OUTPUT:

IF log_pos == False:

Function will produce the distance between starting

position of the walker and the last location.

IF log_pass == True:

Function will produce a list of all the positions

walker was during the walk.

"""

Find the initial postion of the walker in the space

starting_position = space.getPos(walker)

Move the walker in the space

save_all_pos = []

for i in range(number_of_steps):

pos_=space.getPos(walker)

if log_pos:

save_all_pos.append((pos_.findX(), pos_.findY()))

space.moveWalker(walker)

if log_pos:

return save_all_pos

return starting_position.distance(space.getPos(walker))

In the following we are going to define a function to perform severel random walks:

In [115]: def simulate_walks(number_of_steps, number_of_simulations, walker_class_type, origin=position(

"""

This is function that runs simulation for given variables:

26

INPUT:

number_of_steps: How many step the walker should take

number_of_simulations: How many simulation to run

walker_class_type: The type of walker class (a subclass of walker)

origin: Should be an instance of the class position

Output:

A list of distances from origins

"""

our_walker = walker_class_type("walker_1")

distances=[]

for i in range(number_of_simulations):

space = Space()

space.addWalker(our_walker, origin)

distances.append(walk(space, our_walker, number_of_steps))

return distances

def test_simulation(walk_lenght_array, number_of_simulations, walker_class_type):

"""

Some sanity checks on the simulations

"""

for walk_lenght in walk_lenght_array:

distances = simulate_walks(walk_lenght, number_of_simulations, walker_class_type)

print(walker_class_type.__name__, " random walk of {} steps".format(walk_lenght),

print(" Mean= {}".format(round(sum(_distances_)/len(_distances_),4)))

print(" Max= {}".format(round(max(_distances_), 4)))

print(" Min= {}".format(round(min(_distances_),4)))

In [116]: test_simulation([0,1,2, 10**3, 10**5], 100, Normal_walker)

Normal_walker random walk of 0 steps After 100 simulations

Mean= 0.0

Max= 0.0

Min= 0.0

Normal_walker random walk of 1 steps After 100 simulations

Mean= 1.0

Max= 1.0

Min= 1.0

Normal_walker random walk of 2 steps After 100 simulations

Mean= 1.3285

Max= 2.0

Min= 0.0

Normal_walker random walk of 1000 steps After 100 simulations

Mean= 28.7257

Max= 91.7061

Min= 2.8284

27

Normal_walker random walk of 100000 steps After 100 simulations

Mean= 286.1797

Max= 830.3794

Min= 30.2655

In [117]: test_simulation([0,1,2, 10**3, 10**5], 100, Biased_walker)

Biased_walker random walk of 0 steps After 100 simulations

Mean= 0.0

Max= 0.0

Min= 0.0

Biased_walker random walk of 1 steps After 100 simulations

Mean= 0.965

Max= 1.5

Min= 0.5

Biased_walker random walk of 2 steps After 100 simulations

Mean= 1.3026

Max= 3.0

Min= 0.0

Biased_walker random walk of 1000 steps After 100 simulations

Mean= 250.9924

Max= 303.2375

Min= 196.4688

Biased_walker random walk of 100000 steps After 100 simulations

Mean= 25029.4813

Max= 25708.3555

Min= 24292.8114

The next function is going to run the simulation for both walker types, Notice that is general
for any number of walker types, here we only defined two but can be extended as well.

In [118]: def test_simulate_all_walker_types(walk_lenght_array, number_of_simulations, walker_types):

for walker in walker_types:

test_simulation(walk_lenght_array, number_of_simulations, walker)

test_simulate_all_walker_types([0,1,2], 100, [Biased_walker, Normal_walker])

Biased_walker random walk of 0 steps After 100 simulations

Mean= 0.0

Max= 0.0

Min= 0.0

Biased_walker random walk of 1 steps After 100 simulations

Mean= 1.07

Max= 1.5

Min= 0.5

Biased_walker random walk of 2 steps After 100 simulations

Mean= 1.2585

28

Max= 3.0

Min= 0.0

Normal_walker random walk of 0 steps After 100 simulations

Mean= 0.0

Max= 0.0

Min= 0.0

Normal_walker random walk of 1 steps After 100 simulations

Mean= 1.0

Max= 1.0

Min= 1.0

Normal_walker random walk of 2 steps After 100 simulations

Mean= 1.1681

Max= 2.0

Min= 0.0

Here we are running the simulation at will find the average of different simulations for the
given (fixed) number of steps. We are going to that for the range of steps

In [119]: from time import time

number_of_simulations=100

number_of_steps_range=300

ti= time()

distances= [np.mean(simulate_walks(n,number_of_simulations, Normal_walker)) for n in range

print("Runtime for Normal walker: {} s".format(time()-ti))

ti= time()

distances_biased = [np.mean(simulate_walks(n,number_of_simulations, Biased_walker)) for

print("Runtime for Biased walker: {} s".format(time()-ti))

Runtime for Normal walker: 9.139477729797363 s

Runtime for Biased walker: 9.050119876861572 s

In [120]: fig = plt.figure(figsize=(8,8))

slope=0.25

plt.plot(range(number_of_steps_range), distances_biased, label="Biased walker (0.5)")

plt.plot(range(number_of_steps_range), distances, label="Normal walker")

plt.plot(range(number_of_steps_range), np.sqrt(range(number_of_steps_range)), label="$y=

plt.plot(range(number_of_steps_range), slope*np.array(range(number_of_steps_range)), label

plt.xlabel(r"Number of Steps", size=16)

plt.ylabel(r"Average Distance from origin", size=16)

plt.legend(fontsize=18)

plt.show()

29

