Problem 1: Find the distribution!

These are the data-set for the number of car accidents in the rush hour of a small city. You are assigned to predict the **number of car accidents in a given hour of the day**. You need to find the full probability distribution of this quantity.

Also, make sure to clearly state the assumptions you are making at each step.

16	24	16	12	16	11	14	15	9	14	7
----	----	----	----	----	----	----	----	---	----	---

Table 1: The Number of Accident during rush hour

Tip: You can/should make reasonable assumption about the data.

Problem 2: Find the parameters!

Write a python function to find μ and σ :

$$N(x|\mu, \sigma) = N(x|\mu_1, \sigma_1)N(x|\mu_2, \sigma_2)...N(x|\mu_N, \sigma_N)$$

In which N is a Normal distribution:

$$N(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Your function should take two vectors:

$$\vec{\mu}$$
= numpy.array $[\mu_1, \mu_2, ..., \mu_N]$
 $\vec{\sigma}$ = numpy.array $[\sigma_1, \sigma_2, ..., \sigma_N]$

And return μ and σ .